JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 01 00 00	SUBSONIC AERODYNAMICS	
081 01 01 00	Basics, Laws and Definitions	
081 01 01 01	 Laws and definitions 	
	 List the SI-units for mass, acceleration, velocity, density, temperature, pressure, force, wing loading and power 	
	 Describe Newton's Laws 	
	 Describe Newton's first law of continuity 	
	 Describe Newton's second law (law of motion) 	
	 Describe the equation of momentum (impulse), Newton's third law 	
	 Explain air density 	
	 List the atmospheric properties that effect air density 	
	 Explain how temperature and pressure changes affect density 	
	Define static pressure	
	 Define dynamic pressure 	Given table of Standard
	 Define the formula for dynamic pressure 	Atmosphere
	 Apply the formula for a given altitude and speed 	
	 Define Bernoulli's theorem 	
	 Define total pressure 	Given table of Standard

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Apply the theorem for a given speed and altitude 	Atmosphere
	 Apply the theorem to a venturi 	
	 Describe how the IAS is acquired from the pitot-static system 	
	 Describe the Ideal Gas Law 	
	 Describe the Equation of Continuity 	
	 Describe viscosity 	
	 Define the speed of sound and its symbol 	
	 Describe how atmospheric properties affect the speed of sound 	
	 Define IAS, CAS, EAS, TAS and MACH number 	
081 01 01 02	 Basics about airflow 	
	 Describe stationary and not stationary airflow 	
	 Explain the concept of a streamline 	
	 Describe and explain airflow through a streamtube 	
	 Explain the difference between two and three dimensional airflow 	
081 01 01 03	 Aerodynamic forces and moments on the surfaces 	
	 Describe the force resulting from the pressure distribution around an aerofoil 	
	 Resolve the resultant force into the components ' lift' and 'drag' 	
	 Describe the direction of lift and drag 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define the aerodynamic moment 	
	 List the factors that affect the aerodynamic moment 	
	 Describe the aerodynamic moment for a symmetrical aerofoil. 	
	 Describe the aerodynamic moment for a positively cambered aerofoil. 	
	 Forces and equilibrium of forces Refer 081 08 00 00 	
	 Define angle of attack 	
081 01 01 04	 Shape of an aerofoil 	
	 Describe the following parameters of an aerofoil: 	
	 Leading edge 	
	 Trailing edge 	
	– Chordline	
	 Thickness to chord ratio 	
	 Location of maximum thickness 	
	- Camberline	
	– Camber	
	 Nose radius 	
	 Angle of attack 	
	 Angle of incidence 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe a symmetrical and an asymmetrical aerofoil 	
081 01 01 05	 The wing shape 	
	 Describe the following parameters of a wing: 	
	– Span	
	 Root chord 	
	 Tip chord 	
	 Taper ratio 	
	– Wing area	
	 Mean aerodynamic chord MAC 	
	 Aspect ratio 	
	 Dihedral angle 	
081 01 02 00	The Two-dimensional Airflow about an aerofoil	
081 01 02 01	 Describe the streamline pattern over an aerofoil 	
	 Describe converging and diverging streamlines and their effect on static pressure and velocity 	
	 Describe up-wash and down-wash 	
081 01 02 02	- Stagnation point	
	 Describe the stagnation point 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the effect on the stagnation point of angle of attack changes. 	
	 Explain local pressure changes. 	
081 01 02 03	 Pressure distribution 	
	 Describe an approximate pressure distribution over an aerofoil 	
	 Describe where the minimum local static pressure is typically situated on an aerofoil 	
081 01 02 04	 Centre of pressure and aerodynamic centre 	
	 Define the centre of pressure and aerodynamic centre. 	
	 Explain centre of pressure movement with angle of attack. 	
081 01 02 05	 Lift and downwash 	
	 Explain the association between lift and downwash 	
081 01 02 06	 Drag and wake 	
	 List two physical phenomena that cause drag 	
	 Describe skin friction drag 	
	 Describe pressure (form) drag 	
	 Explain why drag and wake cause a loss of energy (momentum) 	
081 01 02 07	 Explain the influence of angle of attack on lift 	
081 01 02 08	– Refer 081 01 08 01	
081 01 02 09	 Describe the lift and angle of attack graph 	Given lift - α graph

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the significant points on the graph. 	
	– Describe lift against α graph for a symmetrical profile	
081 01 03 00	The Coefficients Explain why coefficients are used in general 	
081 01 03 01	 The lift coefficient C_L 	
	 Describe the lift formula 	
	 List factors that influence lift 	
	 Describe which are the dominant factors in the lift formula 	
	– Describe the C _L - α graph (symmetrical and positively cambered profile	
	- Describe the typical difference in C $_{\text{L}}$ - α graph for fast and slow profile design	
	– Define the C_{Lmax} and α_{stall} on the graph	
	 State the approximate stall angle of attack 	
081 01 03 02	 The drag coefficient C_D 	
	 Describe the drag formula 	
	 List the factors that influence drag 	
	 Indicate which is the dominant factor in the drag formula 	
	 State that drag increases as a function of the square of the speed 	
	 State that drag is proportional to the density of the airflow 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– Describe the C_L - C_D graph	
	 Indicate minimum drag on the graph 	
	- Explain why the C _L - C _D ratio is important as a measure of performance	
	– State the normal values of $C_L - C_D$	
081 01 04 00	The Three-dimensional Airflow about an Aeroplane	
	 Explain the difference between the angle of attack and the attitude of an aeroplane 	
081 01 04 01	 Describe the general streamline pattern around the wing, tail section and fuselage 	
	 Explain and describe the causes of spanwise flow over top and bottom surfaces 	
	– Describe tip vortices and local α	
	 Explain how tip vortices vary with angle of attack 	
	 Explain up-wash and down-wash due to tip vortices 	
	 Describe span-wise lift distribution 	
	 Describe the causes, distribution and duration of the wake turbulence behind an aircraft 	
	 Describe the influence of flap deflection on the tip vortex 	
	 List the parameters that influence the wake turbulence 	
081 01 04 02	 The Induced Drag 	
	 Explain what causes the induced drag 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the approximate formula for the induced drag coefficient 	
	 State the factors that affect induced drag 	
	 Describe the relationship between induced drag and total drag in the cruise 	
	 Describe the effect of weight on induced drag at a given IAS 	
	 Describe the design means to decrease induced drag 	
	– Winglets	
	 Tip tanks 	
	 Wing span loading 	
	 Influence of wing twist 	
	 Influence of camber change 	
	 Describe the influence of tip vortices on the angle of attack. 	
	 Explain induced local angle of attack. 	
	 Explain the influence of the induced angle of attack on the direction of the lift vector 	
	 Explain the relationship between induced drag and 	
	– Speed	
	 Aspect ratio 	
	 Wing planform 	
	 Explain the induced drag coefficient. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the relationship between the induced drag coefficient and the angle of attack or lift coefficient. 	
	 Explain the influence of induced drag on 	
	- C _L - angle of attack graph, show effect on graph when comparing high and low aspect ratio wings	
	- C _L - C _D (aeroplane polar), show effect on graph when comparing high and low aspect ratio wings.	
	- Parabolic aeroplane polar in a graph and as a formula ($C_D = C_{Dp} + KC_L^2$).	
081 01 05 00	The Total Drag Explain how lift affects drag 	
081 01 05 01	 The parasite drag 	
	 List the types of drag that are included in the parasite drag 	
	 Describe profile drag. 	
	 Describe interference drag. 	
	 Describe friction drag 	
081 01 05 02	 The parasite drag and speed 	
	 Describe the relationship between parasite drag and speed. 	
081 01 05 03	– Refer 081 01 04 02	
081 01 05 04	 The total drag 	
081 01 05 05	 Describe total drag - IAS graph 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 01 05 06	 Indicate the IAS for the minimum drag from the graph 	
081 01 05 07	 The drag - speed graph Describe the effect of aeroplane gross weight on the graph Describe the effect of pressure altitude on: Drag - IAS graph Drag - TAS graph Describe speed stability from the graph Describe non-stable, neutral and stable IAS regions Explain what happens to the IAS and drag on the non-stable region if speed suddenly decreases 	
081 01 06 00	The Ground Effect	
	 Explain what happens to the tip vortices, down-wash, airflow pattern and lift vector close to the ground. 	
081 01 06 01	 Describe the influence of the ground effect on C_{DI} 	
	 Explain the effects on entering and leaving the ground effect 	
081 01 06 02	 Describe the influence of the ground effect on α_{stall} 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 01 06 03	– Describe the influence of the ground effect on C_L	
081 01 06 04	 Describe the influence of the ground effect on take-off and landing characteristics of an aeroplane 	
	 Describe the difference between 	
	 High and low wing characteristics 	
	 High and low tail characteristics 	
	 Explain the effects on static pressure measurements at the static ports when entering and leaving ground effect. 	
081 01 07 00	Describe the relationship between lift coefficient and speed for constant lift as a formula	
081 01 07 01	– Explain the effect on C_L during speed increase/decrease in level flight.	
081 01 07 02	- Explain using a graph, the effect on speed at various angles of attack and C_L , at a given weight.	
	– Calculate the change of C_L as a function of IAS	
081 01 08 00	The Stall	
081 01 08 01	 Flow separation at increasing angles of attack 	
	 Define the boundary layer 	
	 Describe the thickness of a typical boundary layer 	
	 List the factors that effect the thickness 	
	 Describe the laminar layer 	
	 Describe the turbulent layer 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define the transition 	
	 List the differences between laminar and turbulent boundary layers 	
	 Explain why the laminar boundary layer separates easier than the turbulent one 	
	 List the factors that slow down the airflow over the aft part of an aerofoil, as angle of attack is increased 	
	 Define the separation point 	
	 Define the critical or stalling angle of attack 	
	 Describe the influence of increasing the angle of attack on 	
	 The forward stagnation point 	
	 The pressure distribution 	
	 Location of the centre of pressure 	
	- C _L and L	
	- C _D and D	
	 The pitching moment (straight and swept back wing) 	
	 The down-wash at horizontal stabiliser 	
	 Explain what causes the possible natural buffet on the controls in a pre-stall condition 	
	 Describe the effectiveness of the flight controls in a pre-stall condition 	
	 Describe and explain the normal post-stall behaviour of a wing / aeroplane 	
	 Describe the dangers of using the controls close to the stall 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 01 08 02	- The stall speed	
	 Solve the 1g stall speed from the lift formula 	Given the formula with
	 Define the FAA stall speed 	V_{S} and C_{Lmax} .
	 Describe and explain the Influence of the following parameters on the stall speed: 	
	 Centre of gravity 	
	 Power setting 	
	 Wing loading (W/S) or gross mass 	
	 Wing contamination 	
	 Angle of sweep 	
	 Define the load factor n 	
	 Describe the general idea why the load factor increases in turns 	
	 Describe and explain the Influence of the load factor (n) on the stall speed 	
	 Calculate the increase of stall speed as a function of the load factor 	
	 Calculate the increase of stall speed in a horizontal coordinated turn as a function of bankangle 	
	 Calculate the change of stall speed as a function of the gross weight 	
081 01 08 03	 The initial stall in span-wise direction 	
	 Explain the initial stall sequence on the following planforms 	
	– Elliptical	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– Rectangular	
	 Moderate and high taper 	
	 Sweepback or delta 	
	 Explain the influence of aerodynamic twist (wash out) and geometric twist 	
	 Explain the influence of deflected ailerons 	
	 Explain the influence of fences, vortilons, saw teeth, vortex generators. 	
081 01 08 04	– Stall warning	
	 Explain why stall warning is necessary 	
	 Explain when aerodynamic and artificial stall warnings are used 	
	 Explain why JAR and FAR require a margin to stall speed. 	
	– Describe:	
	– Buffet	
	 Stall strip 	
	 Flapper switch (leading edge stall warning vane) 	
	 Angle of Attack vane 	
	 Angle of Attack probe 	
	 Stick shaker 	
	 Describe warnings of: 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 high speed buffet 	
	 Describe the recovery after: 	
	 stall warning 	
	– stall	
	 stick pusher actuation 	
081 01 08 05	 Special phenomena of stall 	I
	 Describe the basic stall requirements for JAR/ FAR transport category aeroplanes 	
	 Explain the difference between the power-off and power-on stalls and recovery 	
	 Describe the stall and recovery in a climbing and descending turn 	
	 Describe stalling and recovery characteristics on: 	
	 Swept back wings 	
	 T-tailed aeroplane 	
	– Canards	
	 Describe super- or deep-stall 	
	 Describe the philosophy behind the stick pusher system 	
	 Explain the effect of ice, frost or snow on the stagnation point 	
	 Explain the absence of stall warning 	
	 Explain the abnormal behaviour of the stall 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe and explain the stabiliser stall 	
	 Describe when to expect in-flight-icing 	
	 Explain how the effect is changed when retracting/extending lift augmentation devices 	
	 Describe how to recover from a stall after a configuration change caused by in-flight-icing 	
	 Explain the effect of a contaminated wing 	
	 Explain what "on-ground" icing is. 	
	 Describe the aerodynamic effects of de/anti-ice fluid after the hold/overtime has been reached 	
	 Describe the aerodynamic effects of heavy tropical rain on stall speed and drag 	
	 Explain how to avoid spins 	
	 List the factors that cause a spin to develop 	
	 Describe spin development, recognition and recovery 	
	 Describe the differences in recovery techniques for aircraft that have different mass distributions between the wing and the fuselage 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 01 09 00	C _{LMAX} Augmentation	
081 01 09 01	 Describe trailing edge flaps and the reasons for their use during take-off and landing 	
	 Identify the differing types of trailing edge flaps given a relevant diagram 	
	 Split flaps 	
	– Plain flaps	
	 Slotted flaps 	
	 Fowler flaps 	
	 Describe their effect on wing geometry 	
	 Describe how the wings effective camber increases 	
	 Describe how the effective chordline differs from the normal chordline 	
	 Describe their effect on the stalling speed 	
	 Describe their effect on aeroplane pitching moments. 	
	– Compare their influence on the C _L - α graph	
	– Indicate the variation in C_L at any given angle of attack	
	– Indicate the variation in C_D at any given angle of attack	
	 Indicate their effect on C_{LMAX} 	
	 Indicate their effect on the stalling angle of attack 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– Indicate their effect on angle of attack at a given C_L	
	– Compare their influence on the C_L - C_D graph	
	– Indicate how the $(C_L/C_D)_{MAX}$ differs from that of a clean wing	
	 Explain the influence of trailing edge deflection on glide angle 	
	 Describe flap asymmetry 	
	 Explain the effect on aircraft controllability 	
	 Describe trailing edge flap effect on take-off and landing 	
	 Explain the advantages of lower nose attitudes 	
	 Explain why take-off and landing speeds/distances are reduced 	
081 01 09 02	 Describe leading edge high lift devices 	
	 Identify the differing types of leading edge high lift devices given a relevant diagram 	
	 Krueger flaps 	
	 Variable camber flaps 	
	- Slats	
	 State their effect on wing geometry 	
	 Describe the function of the slot 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	- Describe how the wings effective camber increases	
	 Describe how the effective chordline differs from the normal chordline 	
	 State their effect on the stalling speed 	
	– Compare their influence on the C _L - α graph, compared trailing edge flaps and clean wing.	
	 Indicate the effect of leading edge devices on C_{LMAX} 	
	- Explain how the C _L curve differs from that of a clean wing	
	 Indicate the effect of leading edge devices on the stall angle of attack 	
	– Compare their influence on the C_L - C_D graph	
	 Describe slat asymmetry 	
	 Describe the effect on aeroplane controllability 	
	 Describe automatic slat operation 	
	 Explain the reasons for using leading edge high lift devices on take-off and landing 	
	 Explain the disadvantage of increased nose up attitudes 	
	 Explain why take-off and landing speeds/distances are reduced 	
081 01 09 03	 Vortex generators 	
	 Explain the purpose of vortex generators 	
	 Describe their basic operating principle 	
	 State their advantages and disadvantages 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
080 01 10 00	Means to Decrease the C_L/C_D Ratio, and Increase Drag	
081 01 10 01	 Describe spoilers and the reasons for use in the different phases of flight 	
	 Roll spoilers 	
	 Flight spoilers (speed brakes) 	
	 Ground spoilers (Lift dumpers) 	
	 Describe the operation of ground spoilers (lift dumpers) 	
	 Describe the purpose of a spoiler-mixer unit 	
	– Describe the effect of spoilers on the C _L - α graph	
	– Describe the influence of spoilers on the C_L - C_D graph and lift/drag ratio	
081 01 10 02	 Describe speed brakes and the reasons for use in the different phases of flight 	
	– State their influence on the C_L - C_D graph and lift/drag ratio	
	 Explain how speed brakes increase parasite drag 	
	 Describe how speed brakes affect the minimum drag speed 	
	 Describe their effect on rate of descent 	
081 01 11 00	Boundary Layer	
081 01 11 01	– Refer 081 01 08 01	

(080 00 00 00 - PRINCIPLES OF FLIGHT)

JAR-FCL	LEARNING OBJECTIVES	REMARKS
081 01 11 02	 Advantages and disadvantages of different types of boundary layer on pressure drag and friction drag 	
081 01 12 00	Special Circumstances	
081 01 12 01	 Explain the effect of ice and other contamination on aeroplane performance 	
	 Describe the effects of ice accumulations at the stagnation point 	
	 Describe the effects on ice, frost, snow on the surface condition 	
	 Describe how it affects the boundary layer 	
	 Describe how rain and other liquids affect the surface condition 	
	 Describe the effect on aircraft weight 	
	 Explain the effect on lift and drag 	
	 Describe the effect of contamination of the leading edge 	
	 Explain the effect on aircraft controllability 	
	 List the causes of leading edge contamination 	
	 Describe the effects of contamination on the stall 	
	 Describe the effect on the boundary layer condition 	

- Describe the effect on the stalling angle of attack

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the effect on the stalling speed 	
	 Describe how contamination leads to loss of controllability 	
	 State the effect of tail icing 	
	 Describe the effects on control surface moment (stick forces) 	
	 Describe the influence of contamination on high lift devices during take-off, landing and low speeds 	
	 Explain why contamination degrades high lift devices efficiency 	
	 Explain why contamination increases the take-off and landing distances/speeds 	
	 Describe how contamination reduces the coefficient of lift 	
	 Explain the effect of contamination on the lift/drag ratio 	
081 01 12 02	 Describe the effect of airframe deformation and modification of an ageing aeroplane on aeroplane performance 	
	 Explain the effect on boundary layer condition of an ageing aircraft 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 02 00 00	TRANSONIC AERODYNAMICS	
081 02 01 00	The Mach number definition	
081 02 01 01	 Define the speed of sound 	
	 Define the Mach number as a function of TAS and speed of sound 	
081 02 01 02	 Describe the influence of temperature on the speed of sound 	
	 Explain the variation of the speed of sound with altitude 	
	 Explain the absence of change of Mach number with varying temperature at constant flight level and Calibrated Airspeed 	
	 Explain the change of TAS as a function of altitude at a given Mach number 	
	 Explain the change of Mach number at varying altitude in the standard atmosphere (troposphere and stratosphere) with constant Calibrated Airspeed and with constant True Airspeed. 	
081 02 01 03	 State that compressibility means that density can change along a streamline 	
	 State that Mach number is a measure of compressibility 	
081 02 02 00	Normal shockwaves	Give the approximate
	 List the subdivision of aerodynamic flow: 	boundaries in Machnumber values
	 Subsonic flow 	
	 Low-subsonic, non-compressible flow 	

JAR-FCL REF NO		LEARNING OBJECTIVES	REMARKS
		 High subsonic, compressible flow 	
		 Transonic flow, mixture of local speeds above and below the speed of sound 	
		 Supersonic flow, all speeds higher than the speed of sound 	
081 02 02 01	-	Describe how the streamline pattern changes due to compressibility.	
	-	Describe M _{crit}	
	-	Describe a normal shock wave in a transonic flow with respect to	
		 temperature, pressure, velocity and density changes 	
		 location in a supersonic area of the stream pattern 	
		 length of the shockwave and orientation relative to the wing surface 	
081 02 02 02	-	Explain the influence of increasing Mach on a normal shock wave, at positive lift with respect to	
		- strength	
		 position relative to the wing 	
		 second shock wave at the lower surface 	
	-	Explain the influence of control surface deflection with respect to	
		 the effect of M_{crit} 	
		 loss of control effectiveness 	
	-	Explain how increase of the angle of attack influences normal shock wave and $M_{ m crit}$	
	-	Explain the effect of aerofoil thickness on M _{crit}	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the influence of the angle of sweep with respect to 	
	 the increase of M_{crit} 	
	 effective thickness/chord change. 	
	 velocity component perpendicular to the leading edge. 	
	 Describe the influence of the angle of sweep at subsonic speed with respect to 	
	- C _{LMAX}	
	 efficiency of high lift devices. 	
	 pitch-up stall behaviour. 	
	 Explain area ruling in aeroplane design 	
081 02 02 03	 Describe the consequences of exceeding M_{crit} with respect to 	
	– gradient of the C _L - α graph	
	 C_{LMAX} (stall speed) 	
	-	
	– Explain the behaviour of C_D versus M at constant angle of attack	
	 Explain effect of Mach number on the C_L-C_D graph 	
081 02 02 04	 State that aerodynamic heating is caused by compression and friction. 	
081 02 02 05	 Explain shock stall and describe its relationship with mach buffet. 	
081 02 02 06	 Describe the influence on: 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– Wave drag	
	 Explain the influence of shock stall on the location of the centre of pressure with respect to 	
	 loss of lift at the wing root 	
	 reduction of downwash at the wing root 	
	 List the aerodynamic and mechanical counter measures for the Mach tuck-under effect 	
081 02 02 07	 Describe the influence on the buffet margin of 	
	 angle of attack 	
	 Mach number 	
	 pressure altitude 	
	– mass	
	 load factor 	
	 Describe the 1.3 g altitude with respect to the buffet margin 	Given a Buffet Onset
	 Describe what can be obtained from the buffet boundary chart 	Boundary Chart of the Airbus
	– Find:	A310
	 Buffet restricted speed limits at a given pressure altitude 	
	 Aerodynamic ceiling at a given mass. 	
	 Load factor and bank angle at which buffet occurs at a given mass, Mach number and pressure altitude 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Illustrate the behaviour of the buffet margin when an aeroplane is descending or ascending at a given indicated airspeed, or Mach number. 	
081 02 02 08	– Identify the V _{MO} and M _{MO} values	Given a flight envelope
	 Identify the stall speed 	diagram of the Airbus A310
	 Identify the "coffin corner" 	
	– Describe	
	 the allowable speed range in the coffin corner 	
	 the influence of mass on the coffin corner boundaries 	
	– the consequences of exceeding V_{MO}	
	 the consequences of exceeding M_{MO} 	
	 Describe the influence of 	
	 buffet on the flight envelope 	
	– mass on the values of V_{MO} and M_{MO}	
	– temperature on the pressure altitude at which the V_{MO} limit intersects the M_{MO} limit	
081 02 03 00	Means to avoid the effects of exceeding M _{crit}	
081 02 03 01	 Explain the use of vortex generators as a means to avoid or restrict flow separation 	
081 02 03 02	 Identify the following shape characteristics of a supercritical aerofoil shape: 	
	 Blunt nose 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Large thickness 	
	 S-shaped camber line 	
	 Flat upper surface 	
	 Thick trailing edge 	
	 Explain with respect to a supercritical aerofoil 	
	 the increased number of smaller and weakened shockwaves compared those of a classic profile 	
	 the absence of a strong influence on M_{crit} 	
	 aft loading 	
	 Explain the following advantages of a supercritical aerofoil: 	
	 allows use of less sweep angle 	
	 may be built lighter, due to greater thickness 	
	 allows storage of more fuel 	
	 allows use of a higher aspect ratio 	
	 Explain the following disadvantages of a supercritical aerofoil: 	
	 Negative camber at the aerofoil front side 	
	 Buffet may cause severe oscillations 	
081 03 00 00	SUPERSONIC AERODYNAMICS	
081 03 01 00	Oblique Shockwaves	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 03 01 01	- Define Mach Cone	
	 Explain that the Mach cone top angle decreases with increasing Mach number 	
	 Define the bow wave 	
	 Identify the Mach cone area of influence of a pressure disturbance due to the presence of the aeroplane 	
	-	
	-	
081 03 01 02	 Describe influence of weight (wing loading) 	
081 03 01 03	 Describe shock waves and expansion waves with respect to the streamline pattern and variation of pressure, temperature, density and velocity along a streamline 	
	 Describe the velocity behind a normal and an oblique shockwave 	
081 03 01 04	 Describe the movement of the centre of pressure with increasing Mach number 	
	 Describe the pressure distribution in chord direction in supersonic flight 	
081 03 01 05	 Describe wave drag 	
	 Describe effect on control surface hinge moment 	
	 Describe effect on control surface efficiency 	
	 Explain that an oblique shockwave moves with aeroplane ground speed over the earth surface 	
081 04 00 00	STABILITY	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 04 01 00	Condition of equilibrium in stable horizontal flight	
081 04 01 01	 Explain an equilibrium of forces and moments as the condition for the concept of static stability 	
	– Identify	
	 Longitudinal static stability 	
	 Directional static stability 	
	 Lateral static stability 	
081 04 01 02	 Identify the moments considered in the equilibrium of moments: moments about all three axes 	
081 04 01 03	 Identify the forces considered in the equilibrium of forces 	
081 04 02 00	Methods of achieving balance	
081 04 02 01	 Explain the stabiliser and the canard as the means to satisfy the condition of nullifying the total sum of the moments about the lateral axis 	
	 Explain the influence of the location of the wing centre of pressure relative to the centre of gravity on the magnitude and direction of the balancing force on stabiliser and canard 	
	 Explain the influence of the indicated airspeed on the magnitude and direction of the balancing force on stabiliser and canard 	
	 Explain the influence of the balancing force on the magnitude of the wing/fuselage lift 	
081 04 02 02	 Explain the use of the elevator deflection or stabiliser angle for the generation of the balancing force 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the elevator deflection required to balance thrust changes 	
081 04 02 03	 Explain the most advantageous location of the centre of gravity 	
	 Explain the control of the location of the centre of gravity by means of fuel distribution and loading 	
081 04 03 00	Longitudinal Stability	
081 04 03 01	 Define static stability 	
	 Identify a statically stable, neutral and unstable equilibrium 	
	 Define dynamic stability 	
	 Identify a dynamically stable, neutral and unstable motion 	
	 Explain what combinations of static and dynamic stability will return an aeroplane to the equilibrium state after a disturbance 	
	 Describe the phugoid and short period motion in terms of period and damping 	
	 Explain that during the phugoid motion the angle of attack remains approximately constant 	
	 Explain that during the short period motion the aircraft speed remains approximately constant 	
	 Explain why short period motion is more important for flying qualities than the phugoid 	
	 Define and describe pilot induced oscillations 	
	 Explain the effect of high altitude on dynamic stability 	
081 04 03 02	 Explain why static stability is the opposite of manoeuvrability 	
081 04 03 03	 Neutral point / location of neutral point 	

JAR-FCL REF NO		LEARNING OBJECTIVES	REMARKS
	-	Define neutral point	
	_	Explain why the location of the neutral point is only dependent on the aerodynamic design of the aeroplane	
081 04 03 04	_	Indicate the location of the neutral point relative to the locations of the aerodynamic centre of the wing and tail/canard	
	-	Explain the influence of the downwash variations with angle of attack variation on the location of the neutral point	
081 04 03 05	_	Explain the influence of the location of the centre of gravity on static and dynamic stability of the aeroplane	
	_	Explain the approved forward and aft limits of the centre of gravity with respect to the criteria of control forces, elevator effectiveness and stability	
	-	Define the minimum stability margin	
081 04 03 06	-	Define the aerodynamic pitching moment coefficient (C _m)	
	-	Describe the C _m - α graph with respect to	
		 positive and negative sign 	
		 linear relationship 	
		 angle of attack for equilibrium state 	
		 relationship of slope and static stability 	
081 04 03 07	_	Explain	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	- the effect on the C_m - α graph with a shift of CG in the forward and aft direction.	
	- the effect on the C_m - α graph when the elevator is moved up or down.	
	- the effect on the C_m - α graph when the trim is moved.	
	 the wing contribution and the effect of the location of the cg with respect to the aerodynamic centre on the wing contribution 	
	 the contribution of the fuselage and the effect of the location of the centre of gravity on the fuselage contribution 	
	 the contribution of the tail 	
	 the contribution of the configuration (gear and flaps) 	
	 the contribution of aerofoil camber 	
	-	
081 04 03 08	 Describe the elevator position speed graph 	
	– Explain:	
	 the gradient of the elevator position speed graph 	
	 the influence of the airspeed on the stick position stability 	
081 04 03 09	 Explain the contribution on the elevator position - speed graph of: 	
	 Location of centre of gravity. 	
	 Trim (trim tab and stabiliser trim) 	
	 high lift devices 	

JAR-FCL REF NO		LEARNING OBJECTIVES	REMARKS
081 04 03 10	-	Define the stick force speed graph	
	-	Describe the minimum gradient for stick force versus speed that is required for certification according JAR 23 and JAR 25	
	-	Explain the importance of the stick force gradient for good flying qualities of an aeroplane	
	-	Identify the trim speed in the stickforce speed graph	
081 04 03 11	-	Explain the contribution of:	
		 Location of the centre of gravity 	
		 Trim (trim tab and stabiliser trim) 	
		 Mach number and the effect of Mach tuck-under and the Mach trim system 	
		– Downspring	
		 bob weight 	
		- friction	
	-	State that:	
		- In transonic flow due to the Mach tuck under effect the stick force gradient may be too small or unstable	
		 the Mach trim system restores stick force gradient 	
081 04 03 12	-	Define the stick force per g	
	-	Explain why	
		 the stick force per g has a prescribed minimum and maximum value 	
		 the stick force per g decreases with pressure altitude at the same Indicated Airspeeds 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 04 03 14	 Explain that the stickforce per g is: 	
	 dependent on location of centre of gravity 	
	 independent of the trim setting 	
	 independent of a down spring in the control system 	
	 greater with the application of a bob weight in the control system 	
081 04 03 15	 Explain why the prescribed minimum and maximum values of the stickforce per g are dependent on the limit load factor 	
	 Calculate the stick force to achieve a certain load factor at a given manoeuvre stability 	
081 04 03 16	– Refer to 081 05 02 03	
081 04 04 00	Static directional stability	
081 04 04 01	 Define slip angle 	
	- Identify $β$ as the symbol used for the slip angle	
081 04 04 02	– Define the yawing moment coefficient C_N	
	– Define the relationship between C_N and β for an aeroplane with static directional stability	
081 04 04 03	 Explain why 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	- C _N depends on the angle of slip	
	 C_N equals zero for that angle of slip that provides static equilibrium about the aircrafts normal axis 	
	 If no asymmetric engine thrust, flight control or loading condition prevails, the equilibrium angle of slip equals zero 	
	- Identify how the slope of the C _N - β graph is a measure for static directional stability:	
081 04 04 04	 Describe how the following aircraft components contribute to static directional stability. 	
	– Wing	
	– Fin	
	 Dorsal fin 	
	– Ventral fin	
	 Angle of sweep of the wing 	
	 Angle of sweep of the fin 	
	 location of centre of gravity 	
	 fuselage at high angles of attack 	
	– strakes	
	 Explain why both the fuselage and the fin contribution reduce static directional stability after an aft shift of the centre of gravity 	
081 04 05 00	Static lateral stability	
081 04 05 01	 Define bank angle phi 	

JAR-FCL REF NO		LEARNING OBJECTIVES	REMARKS
081 04 05 02	I	Define the rolling moment coefficient C _l	
081 04 05 03	_	Explain how without co-ordination, the bank angle creates slip angle	
081 04 05 04	_	Describe C _I -β graph	
	_	Identify the slope of the C _I - eta graph as a measure for static lateral stability	
081 04 05 05	-	Explain the contribution to the static lateral stability of	
		– dihedral, anhedral	
		 high wing, low wing 	
		 sweep angle of the wing 	
		 ventral fin 	
		- vertical tail	
		– Mach number	
081 04 05 06	-	Define effective dihedral	
	_	Explain the negative effects of high static lateral stability in	
		 Strong crosswind landings 	
		 Asymmetric thrust situations at high power setting and low speed (go-around, take off) 	
081 04 06 00	Dy	namic lateral/directional stability	
081 04 06 01	-	Effects of asymmetric propeller slipstream	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 04 06 02	 Explain how lateral and directional stability are coupled 	
	 Explain how high static directional stability and a low static lateral stability may cause spiral divergence (unstable spiral dive) and under which conditions the spiral dive mode is neutral or stable 	
	Describe an unstable spiral dive mode with respect to deviations in speed, roll attitude, nose low pitch attitude and decreasing altitude	
081 04 06 03	Describe Dutch roll	
	– Explain	
	 why Dutch roll occurs when the dihedral effect is large compared to static directional stability. 	
	 the condition for a stable Dutch roll motion and those for marginally stable, neutral or unstable Dutch roll motion 	
	 the function of the yaw damper 	
081 04 06 04	 Explain that increased pressure altitude reduces dynamic lateral/directional stability 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 05 00 00	CONTROL	
081 05 01 00	General	
081 05 01 01	– Basics	
	– Define	
	 Lateral axis 	
	 Longitudinal axis 	
	– Normal axis	
	 Describe the motion about the three axes 	
	 Name and describe the devices that control these motions 	
081 05 01 02	 Camber change 	
	 Explain how camber is changed by movement of a control surface 	
081 05 01 03	 Angle of Attack change 	
	 Explain the influence of local angle of attack change by movement of a control surface 	
081 05 02 00	Pitch Control	
081 05 02 01	 Elevator/all flying tail 	
	 Explain the working principle of the horizontal tailplane (stabilizer) 	
	 Explain the working principle of the elevator and describe its function. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 State graphically the effect of elevator deflection on the moment curve. 	
	 Explain why the moment curve is independent of angle of attack. 	
	 Describe the loads on the tailplane in normal flight, lower than normal flight speeds, at higher than normal speed. 	
081 05 02 02	 Downwash effects 	
	 Explain the effect of downwash on the tailplane angle of attack. 	
	 Explain in this context the use of a T-tail or stabilizer trim. 	
081 05 02 03	 Ice on tail 	
	 Explain how ice can change the aerodynamic characteristics of the tailplane. 	
	 Explain how this can affect the tails proper function 	
081 05 02 04	 Location of centre of gravity 	
	 Explain the relationship between pitching moment coefficient and lift coefficient 	
	 Explain the relationship between elevator deflection and location of c.g. in straight flight and in a g manoeuvre 	
081 05 03 00	- Directional control	
	 Explain the working principle of the rudder and describe its function. 	
	 State the relationship between rudder deflection and the moment about the normal axis 	
	 Describe the effect of sideslip on the moment about the normal axis 	
081 05 03 01	 Pedal/Rudder ratio changer 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the purpose of the rudder ratio changer. 	
081 05 03 02	 Moments due to engine thrust 	
	 Describe the effect of engine thrust on pitching moments 	
	 Explain fin stall due to rudder displacement 	
081 05 03 03	 Engine failure 	
	– Refer 081 08 02 00	
081 05 04 00	Roll control	
081 05 04 01	– Ailerons	
	 Describe the purpose of the ailerons 	
	 Describe the adverse effects of ailerons. 	
	 Explain in this context the use of inboard and outboard ailerons 	
	 Explain outboard aileron lockout and conditions under which this feature is used 	
	 Describe the use of aileron deflection in normal flight, flight with side slip, cross wind landings, horizontal turns, flight with one engine out. 	
	 Define roll rate 	
	 List the factors that effect roll rate 	
	 Flaperons, aileron droop 	
081 05 04 03	– Spoilers	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain how spoilers affect lift 	
	 Explain how spoilers can be used to control the rolling movement in combination with or instead of the ailerons 	
081 05 04 04	 Adverse yaw 	
	 Explain how the use of ailerons induce adverse yaw 	
081 05 04 05	 Means to avoid adverse yaw 	
	 Explain how the following reduce adverse yaw 	
	 Frise ailerons 	
	 Differential ailerons deflection 	
	 Coupling aileron deflection 	
	 Roll spoilers 	
	 effects of asymmetric propeller slipstream 	
081 05 05 00	 Interaction in different planes (yaw/roll) 	
	 Describe the coupling effect of roll and yaw 	
	 Explain the secondary effect of ailerons 	
	 Explain the secondary effect of rudder 	
081 05 05 01	 Limitations of asymmetric power 	
	- Refer to 081 08 02 06	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 05 06 00	Methods of Reducing Control Forces	
081 05 06 01	 Aerodynamic balance 	
	 Describe the working principle of the nose and horn balancing (positioning of the hinge line in elevator, aileron and rudder) 	
	 Describe the working principle of internal balance 	
	 Describe the working principle of 	
	 Balance tab 	
	 Anti-balance tab 	
	 Spring tab 	
	 Servo tab 	
081 05 06 02	 Artificial means 	
	 List the examples of artificial means of assisting aerodynamic force 	
	 Describe fully powered controls 	
	 Describe power assisted controls 	
	 Explain why artificial feel is required 	
	 Explain how artificial feel is produced (inputs) 	
	 Dynamic pressure 	
	 Stabilizer setting 	
081 05 07 00	Mass Balance	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	Refer 081 06 01 00	
081 05 08 00	Trimming	
081 05 08 01	 Reasons for trimming 	
	 State the reasons for trimming devices. 	
081 05 08 02	 Describe the working principle of a trim tab 	
081 05 08 03	 Describe stabilizer trim/trim rate verses IAS 	
	 Explain the advantages of a stabiliser trim versus a trim tab 	
	 Explain elevator deflection when aeroplane is trimmed for fully powered and power assisted pitch controls 	
	 Explain the cg position influence on the stabiliser setting 	
	– In-flight	
	– Take-off	
	 Explain the influence of take-off stabiliser trim setting on stick force during rotation at varying c.g. positions within the allowable c.g. range 	
081 06 00 00	Limitations	
081 06 01 00	Operating Limitations - Describe the phenomenon of flutter, and list the factors - Elasticity	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– Backlash	
	 Aero-elastic coupling 	
	 Mass distribution 	
	 List the flutter modes of an aeroplane 	
	– Wing	
	– Tailplane	
	– Fin	
	 Control surfaces including tabs 	
	 Describe the use of mass balance to alleviate the flutter problem by adjusting the mass distribution 	
	 Wing mounted pylons 	
	 Control surface mass balance 	
	 List the possible actions in the case of flutter in flight 	
	 Describe the phenomenon of aileron reversal 	
	 At low speeds - aileron deflection/stalling angle relationship 	
	 At high speeds - aileron deflection causing the wing to twist 	
	– Describe the aileron reversal speed in relationship to V_{NE} and V_{NO}	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the reason for flap/landing gear limitations 	
	– V _{LO}	
	- V _{LE}	
	- Explain why there is a difference between V _{LO} and V _{LE} in the case of some aeroplane types.	
	– Define V _{FE}	
	 Describe flap design features to prevent overload 	
080 06 01 01	- V _{MO} , V _{NO} , V _{NE}	
	– Define V_{MO} and V_{NE}	
	– Describe the difference between V_{MO} and V_{NE}	
	– Describe the relationship between V_{MO} and V_{C}	
	– Define V _{NO}	
	– Explain that V_{MO} can be exceeded during a descent at constant Mach number	
081 06 01 02	– M _{MO}	
	 Define M_{MO} and state its limiting factors 	
	– Explain that M_{MO} can be exceeded during a climb at constant IAS	
081 06 02 00	Manoeuvring Envelope	Given an example diagram

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 06 02 01	 Describe the manoeuvring load diagram 	
	 Identify the varying features on the diagram 	
	 Load factor 'n' 	
	 Speed scale, equivalent airspeed, EAS 	
	 C_{Lmax} boundary 	
	 V_A design manoeuvring speed 	
	 V_c design cruising speed 	
	- V _D design dive speed, a speed set sufficient above V _C to allow for the effects of a defined 'upset'	
	- State the load factor limits for JAR 23 and 25 aircraft in a typical cruise condition and with flaps extended	
081 06 02 02	 Contribution of mass, altitude and mach number 	
	 State the relationship of mass to 	
	 Load factor limits 	
	 Accelerated stall speed limit 	
	- V _A , V _B and V _C	
	- Explain the relationship between V _A and aeroplane mass	
	– Explain the relationship between V_A and V_S in a formula	
	 Calculate the change of V_A wih changing weight 	
	 Describe the effect of altitude on mach number, in respect to limitations 	
081 06 03 00	Gust Envelope	Given example diagram

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 06 03 01	– Gust Load Diagram	
	 Recognise a typical gust load diagram 	
	 Identify the various features shown on the diagram 	
	 Load factor 'n' 	
	 Calculate n as a result of increasing angle of attack. 	
	 Speed scale, equivalent airspeed, EAS 	
	 C_{L MAX} boundary 	
	 Vertical gust velocities 	
	– Relationship of V_B to V_C and V_D	
	 Gust limit load factor 	
	– Define V _{RA}	
081 06 03 02	 Contribution of mass, altitude, speed, mach number, aspect ratio and wing sweep 	
	 Explain the relationship between mass, altitude, speed, mach number, aspect ratio and wing sweep on gust loads 	
081 07 00 00	Propellers	
081 07 01 00	Conversion of engine torque to thrust	Given diagram
	 Describe thrust and torque load 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 07 01 01	 Meaning of pitch 	
	 Describe the geometry of a typical propeller blade element at a representative span location 	
	 Blade chord line 	
	 Propeller rotational velocity vector 	
	 True airspeed vector 	
	 Blade angle of attack 	
	 Pitch or blade angle 	
	 Advance or helix angle 	Given diagram
081 07 01 02	 Blade twist 	
	 Explain why blade twist is necessary 	
	-	
081 07 01 03	 Fixed pitch and variable pitch/constant speed 	
	 List the different types of propeller 	
	 Fixed pitch 	
	 Adjustable pitch or variable pitch (non-governing) 	
	 Variable pitch (governing)/constant speed 	
	 Explain the relationship between blade angle, blade angle of attack and speed for constant speed propeller and a fixed pitch propeller 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 07 01 04	 Propeller efficiency versus speed 	
	Define propeller efficiency	
	 Explain the relationship between propeller efficiency and speed (TAS) 	Given diagram
	 Plot propeller efficiency against speed for the types of propellers listed in 081 07 01 03 above 	
	 Explain the relationship between blade angle and thrust 	
081 07 01 05	 Effects of ice on a propeller 	
	 Describe the effects of ice on a propeller 	
081 07 02 00	Engine Failure or Engine Stop (shut-down)	
081 07 02 01	 Windmilling drag 	
	 List the effects of an inoperative engine on the performance and controllability of an aeroplane 	
	 Thrust loss/drag increase 	
	 influence on yaw moment during asymmetric power 	
081 07 02 02	- Feathering	
	 Explain the reasons for feathering and the effect on performance and controllability 	
	 influence on yaw moment during asymmetric power 	
081 07 03 00	Design features for power absorption	
	 Describe the factors concerning propeller design which increase power absorption. 	
081 07 03 01	 Propeller blade aspect ratio 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define blade aspect ratio 	
081 07 03 02	 Propeller blade diameter 	
	 Explain the reasons for restricting propeller diameter 	
081 07 03 03	 Number of propeller blades 	
	 Define "solidity". 	
	 Describe the advantages and disadvantages of increasing the number of blades 	
081 07 03 04	– Propeller noise	
	 Explain how propeller noise can be minimized 	
081 07 04 00	Moments and couples due to propeller operation	
081 07 04 01	- Torque reaction	
	 Describe the following methods for counteracting engine torque 	
	 Counter-rotating propellers 	
	 Contra-rotating propellers 	
081 07 04 02	 Gyroscopic precession 	
	 Describe the effect on the aeroplane due to the gyroscopic effect 	
081 07 04 03	 Asymmetric slipstream effect 	
	 Describe the possible asymmetric effects of the rotating propeller slipstream 	
081 07 04 04	 Asymmetric blade effect 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the asymmetric blade effect 	

(080 00 00 00 - PRINCIPLES OF FLIGHT)

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 08 00 00	FLIGHT MECHANICS	
081 08 01 00	Forces Acting on an Aeroplane	
081 08 01 01	 Describe the forces acting on an aeroplane in straight horizontal steady flight: 	
	 List the four forces and state where they act. 	
	 Explain how the four forces are balanced. 	
	 Describe the function of the tailplane 	
081 08 01 02	 Describe the forces acting on an aeroplane in a straight steady climb. 	
	 Name the forces parallel and perpendicular to the direction of flight. 	

- Apply the formula relating to the parallel forces ($T = D + W \sin \theta$)

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain why thrust is less than drag. 	
081 08 01 04	 Describe the forces acting on an aeroplane in a straight steady glide. 	
	 Name the forces parallel and perpendicular to the direction of flight 	
	- Apply the formula for forces parallel to the direction of flight (D = W sin q)	
	- Apply the formula for forces perpendicular to the direction of flight (L = W cos q)	
	 Describe the relationship between the glide angle and the lift/drag ratio. 	
	 Describe the relationship between angle of attack and the best lift/drag ratio. 	
	 Explain the effect on glide angle with a wind component. 	
	 Explain the effect on glide angle with mass change. 	
081 08 01 05	 Describe the forces acting on an aeroplane in a steady co-ordinated turn. 	
	- Resolve the forces acting horizontally and vertically during a co-ordinated turn (tan $f = \frac{V^2}{gr}$)	
	 Explain how to correct an unco-ordinated turn 	
	 Explain why the angle of bank is independent of weight and only depends on TAS and radius of turn. 	
	- Resolve the forces to show that for a given angle of bank the radius of turn is determined solely by airspeed (tan $f = \frac{V^2}{gr}$)	
	 Calculate the turn radius at a given angle of bank and TAS 	
	 Explain why the load factor is greater than one in a co-ordinated turn. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Calculate the lift increase as a function of the bank angle 	
	 Define angular velocity. 	
	 Define rate of turn and rate one turn. 	
	 Explain the influence of TAS on rate of turn at a given bank angle 	
081 08 02 00	Describe the Effects on the Aeroplane During Flight with Asymmetric Thrust	
	 Define critical engine 	
081 08 02 01	 Describe the moments about the normal axis. 	
	 Explain the yawing moments about the cg. 	
	 Describe the change to yawing moment caused by power changes. 	
	 Describe the changes to yawing moment caused by engine distance from cg. 	
	 Describe the methods to achieve balance 	
081 08 02 02	 Describe the forces acting on the fin. 	
	 Describe the side force on the fin which counteracts the aircraft yawing moment about the cg. 	
	 Resolve the aircraft yawing moment and fin side force by simple calculation. 	
	-	
081 08 02 03	 Describe the influence of bank angle on yawing moment. 	
	 Explain the effect on fin side force when the aeroplane is banked towards the live engine. 	
	 Explain why the bank angle must be limited. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the effect on fin angle of attack due to side-slip. 	
	_	
081 08 02 04	 Describe the effect of weight increase. 	
	 Describe how weight increase will increase the yawing moment. 	
	 Describe the effect on side-slip with weight increase. 	
	 Describe the effect on rudder effectiveness. 	
081 08 02 05	 Describe the influence of ailerons. 	
	 Explain why aileron effectiveness is reduced. 	
081 08 02 06	 Describe the effect on roll moment created by propeller effect. 	
	 Explain the influence of torque reaction. 	
	 Explain the influence of flaps on roll moment. 	
081 08 02 07	 Describe the influence of slip angle on roll moments. 	
	– Explain how slip angle changes the C_L of the left and right wings.	
	-	
081 08 02 08	– Define V _{MCA}	
	 Describe how V_{MCA} is obtained 	
081 08 02 09	– Define V _{MCL}	
	 Describe how V_{MCL} is obtained 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 08 02 10	– Define V _{MCG}	
	 Describe how V_{MCG} is obtained. 	
081 08 02 11	 Describe the influence of altitude. 	
	– Explain why V_{MCA} and V_{MCG} reduces with an increase in altitude.	
	 Explain the significance of power/thrust available and power/thrust required. 	
	 Derive the effect on rate of climb and angle of climb. 	
081 08 03 00	Emergency descent	
	 Describe low and high speed emergency descent 	
	 Explain the advantages and disadvantages of low and high speed emergency descent 	
081 08 03 01	 Describe the influence of configuration on emergency descent 	
	 Describe the methods to increase drag 	
	_	
081 08 03 02	 Influence of chosen mach number and IAS 	
	 Explain why M_{MO} is the limiting speed at altitude 	
	 Explain why indicated airspeed is the limiting speed at low level 	
	 Describe the dangers when recovering from emergency descent 	
081 08 03 03	 Identify the typical points on a polar curve 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
081 08 03 04	– Windshear	
	 Effect on take-off and landing 	
	 Describe the influence of increasing and decreasing windspeed 	
	 Describe a typical recovery from windshear 	