JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
062 00 00 00	RADIO NAVIGATION	
062 01 00 00	RADIO AIDS	
062 01 01 00	Ground Direction Finder D/F (including classification of bearings)	
	– Principles	
	 Describe the role of a Ground Direction Finder 	
	 Explain why the services provided are subdivided as 	
	 VHF direction finding 	
	 UHF direction finding 	
	 Describe, in general terms, the propagation path of VHF/UHF signals with respect to the ionosphere and the Earth's surface. 	
	 Describe the principle of operation of the VDF in the following general terms 	
	 radio waves emitted by the radio telephony (R/T) equipment of the aircraft 	
	 directional antenna. 	
	 determination of direction of incidence of the incoming signal 	
	– Indicator	
	 Recognise the Adcock antenna with its vertical dipoles 	
	 Presentation and Interpretation 	
	 Describe the common types of bearing presentations on VDU and radar display. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define the terms QDM; QDR; QTE; 	
	 Explain how, using more than one ground DF station, the position of an aircraft can be determined and transmitted to the pilot. 	
	 Coverage and Range 	
	 Calculate the line of sight range (quasi optical visual range) 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define the abbreviation 'NDB' 	
	 Describe the use of NDBs for navigation 	
	 Describe the use of locator beacons 	
	 Interpret the term 'cone of silence' in respect of a NDB. 	
	 State that the transmission power limits the ranges for locators, en-route NDBs and oceanic NDBs. 	
	 Explain why it is necessary to use a directionally sensitive receiver antenna system in order to obtain the direction of the incoming radio wave 	
	 Presentation and interpretation 	
	 Name the types of indicator in common use and state the indications given on the : 	
	 radio magnetic indicator 	
	 fixed card indicator/ radio compass 	
	 Describe and sketch the presentation on the following ADF indicators: 	
	 radio magnetic indicator (RMI) and 	
	 fixed card indicator/ radio compass 	
	 Describe the procedure for obtaining an ADF bearing including the following : 	
	 switch on instrument (on ADF), 	
	 scan frequency, 	
	 regulate volume, 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 receive and identify the NDB, 	
	 read bearing. 	
	 State the function of the BFO (tone generator) switch. 	
	 Calculate the compass bearing from compass heading and relative bearing. 	
	 Convert compass bearing into magnetic bearing and true bearing. 	
	 Describe how to fly the following in-flight ADF procedures (in accordance with DOC 8168 Vol.I) : 	
	– homing	
	- tracking	
	 interceptions 	
	 procedure turns 	
	 holding patterns 	
	 Coverage and range 	
	 Describe the influence of the transmission power on the range. 	
	 Differentiate between NDB range over land and over the sea 	
	 Identify the ranges of locators, en-route NDB's and Oceanic NDB's 	
	 Describe the propagation path of NDB radio waves with respect to the ionosphere and the Earth's surface 	
	 Errors and Accuracy 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define quadrantal error and identify its cause 	
	 State that compensation for this error is effected during the installation of the antenna. 	
	 Explain the cause of the dip error due to the bank angle of the aeroplane 	
	- Define the bearing accuracy as $\pm 6^{\circ}$	
	 Factors affecting range and accuracy 	
	 Indicate the causes and/or effects of the following factors 	
	 multipath propagation of the radio wave (mountain effect) 	
	 the influence of skywaves (night effect) 	
	 the shore line (coastal refraction) effect 	
	 atmospheric disturbances (static and lightning) 	
	 interference from other beacons. 	
062 01 03 00	CVOR and DVOR (incl. use of RMI)	
	– Principles	
	 Name the frequency-band and frequencies used for VOR 	
	 Interpret the tasks of the following types of VOR: 	
	– En-route VOR	
	 conventional VOR (CVOR) 	
	 Doppler VOR (DVOR) 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– Terminal VOR (TVOR)	
	– Test VOR (VOT)	
	 Define a VOR radial 	
	 Recognise antenna arrangements for ground facilities and for aircraft 	
	 Explain the principle of operation of the VOR using the following general terms: 	
	 reference phase 	
	 variable phase 	
	 phase difference 	
	 Explain the use of the Doppler effect in a Doppler VOR 	
	 Describe the identification of a VOR in terms of morse-code letters, continuous tone or dots(VOT), tone pitch, repetition rate and additional plain text 	
	 Describe how ATIS information is transmitted via VOR frequencies 	
	 Name the three main components of VOR airborne equipment 	
	 Identify a VOR from the chart by chart symbol and/or frequency 	
	 Presentation and Interpretation 	
	 Read off the radial from the Radio Magnetic Indicator (RMI) 	
	 Read off the angular displacement, in relation to a pre-selected radial, from the HSI or CDI 	
	 Explain the use of the TO/FROM indicator to determine the aircraft position relative to the VOR 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	considering also the heading of the aircraft	
	 Interpret given VOR information as displayed on HSI, CDI and RMI. 	
	 Describe the following in-flight VOR procedures (in accordance with DOC 8168 Vol. 1): 	
	– homing	
	- tracking	
	 interceptions 	
	 procedure turns 	
	 holding patterns 	
	 Enter a radial on a navigation chart, taking into account the variation at the transmitter location 	
	 Coverage and Range 	
	 Describe the range with respect to the transmitting power and the quasi-optical range in NM 	
	 Calculate the range in NM 	
	 Explain the sector limitations in respect of topography-related reflections 	
	 Errors and Accuracy 	
	 Describe the use of a test VOR for checking VOR indicators in an aircraft 	
	 Describe the signals emitted by the test VOR with respect to reference phase, variable phase and transmitted radial. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Identify the permissible signal tolerance 	
	– State the 95% accuracy of the VOR bearing information is within $\pm 5^{\circ}$	
	 Factors affecting Range and Accuracy 	
	 Explain why the Doppler VOR is more accurate than the conventional VOR 	
	 Illustrate the effects of bending and scalloping of radials. 	
062 01 04 00	DME (distance measuring equipment)	
	– Principles	
	 Identify the frequency band 	
	 Illustrate the use of X and Y channels in military applications. 	
	 Describe the tuning of the DME frequency by the pilot 	
	 Describe the navigation value of the slant range measured by the DME 	
	 Illustrate the circular line of position with the transmitter as its centre 	
	 Describe, in the case of co-location, the frequency pairing and identification procedure 	
	 Explain the function of the DME used in conjunction with the instrument approach systems (ILS) 	
	 Recognise DME antennas on aircraft and on the ground 	
	 Identify a DME station on a chart by the chart symbol 	
	 Describe how the pairing of VHF and UHF frequencies (e.g. VOR/DME) enables selection of two 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	items of navigation information (distance and direction, rho-theta) with one frequency setting	
	 Explain the combination of transmitter/receiver in the aeroplane (interrogator) and on the ground (transponder) 	
	 Explain why airborne and ground equipment use different frequencies 	
	 Describe the principle of distance determination using DME in terms of: 	
	 pair of pulses; 	
	 fixed frequency division of 63 MHz, 	
	 the propagation delay and 	
	 the 50 microseconds delay time 	
	 irregular transmission sequence 	
	 search mode 	
	 tracking mode 	
	 Explain how the combination of a DME distance with a VOR radial allows the aircraft's position to be determined 	
	 Presentation and Interpretation 	
	 Describe the identification (time sequence and frequencies) in the case of co-location with a VOR. 	
	 Interpret the direct distance (slant range) which is displayed in nautical miles. 	
	 Explain why DME indicators display distances up to a maximum of approx. 300 NM. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Calculate the slant range correction 	
	 Describe the use of DME to fly a DME arc (in accordance with Doc 8168 Vol. I). 	
	 Coverage and Range 	
	 Explain why a ground station can generally respond to a maximum of 100 aircraft. Identify which aircraft will be denied first, when more than the maximum number of interrogations is made. 	
	 Illustrate how the DME transponder processes more than 2700 interrogations in the DME's reception area. State how this affects the strongest signals and the closest aircraft units. 	
	 Describe how the range is related to the transmitter power and the quasi-optical range in NM. 	
	 Calculate the range in NM 	
	 Errors and Accuracy 	
	 Interpret the 95% accuracy as stated in ICAO annex 10 	According to ICAO Annex 10 Vol. I par 3.5.3
	 Factors affecting Range and Accuracy 	
	 Interpret the relationship between the number of users, the gain of the receiver and the range. 	
	 State the maximum number of aircraft that can be handled by a DME transponder. Explain what limits this value. 	
	 Illustrate the effect of bank angle hiding the antenna from the transponder on the surface, taking into consideration the time limits of the memory circuit. 	
	 Explain the role of the Echo Protection Circuit in respect of reflections from the earth's surface, buildings or mountainous terrain 	
062 01 05 00	ILS (instrument landing system)	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– Principles	
	 State the site locations of the ILS components in distances along the centreline of the runway 	
	 Name the three main components of an ILS 	
	 Explain why and how the three different markers are used in the ILS to determine the distance to the ILS touchdown point of the runway 	
	 State the nominal glide path angle. Explain the reason why a marker beacon is sometimes replaced by be a DME paired with the LLZ frequency 	
	 Compare the glide path indicated by approach light systems like PAPI with the glide path of the ILS 	
	 Illustrate the position-finding function of the marker beacons in respect of ILS approaches and enroute navigation 	
	 Describe the fan-shaped and bone-shaped radiation pattern of marker beacons 	
	 Name the frequency assigned to all marker beacons 	
	- State the task and use of the Z-marker or a fan-marker, in respect of the cone of silence at the NDB	
	 Name the assigned frequency band of the LLZ transmitters and the GP transmitters (VHF/UHF) 	
	 Describe the use of the 90 Hz and 150 Hz signals in the LLZ and G/P receivers, stating how the signals at the receivers vary with angular deviation. 	
	 Interpret the difference in depth of modulation (DDM) with respect to the centreline for LLZ and the glide path 	
	 State that the difference in the modulation depth increases linearly with displacement from the centre line 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Illustrate the use of the back CRS (as may be encountered published for a 'non-precision' approach) 	
	 With respect to the centre line and the glide path, state the angular deviation values when the indicator displays the deviation needle on the outer dot 	
	 Draw the radiation pattern with respect to the 90 Hz and 150 Hz signals 	
	 Explain the term "difference of depth of modulation (DDM)" 	
	 State the outer limit of the course sector of the LLZ with relation to the width of the beam between the full scale deflections left and right at the threshold of the runway 	
	 Describe how the UHF glide-path frequency is selected automatically 	
	 Presentation and Interpretation 	
	 Describe the ILS identification regarding frequency and Morse code and/or plain text 	
	 Calculate the rate of descent for a given glidepath angle and groundspeed of the aeroplane 	
	 Interpret the different identifications of the markers by means of sound, modulation, frequencies and lights 	
	 Explain how airway markers can be distinguished from other markers from the frequency of the ident and the colour of the light 	
	 Distinguish between marker beacons and Z-markers or fan markers, by reference to their emission diagrams (cylindrical and rectangular respectively) 	
	 Define the approach segment, minimum sector altitude and landing minima 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the circumstances in which warning flags will appear 	
	 Interpret the indications on course deviation indicators (CDI) and horizontal situation indicators (HSI) 	
	 Interpret the aircraft's position in relation to the extended runway centre line on a back-beam approach 	
	 Explain the setting of the course arrow of the HSI for front beam and for back beam approaches 	
	 Explain why, in the case of approaches using a CDI, the course corrections are to be performed towards the needle on the front CRS inbound, but away from the needle on the back CRS inbound 	
	 Coverage and Range 	
	 Sketch the standard coverage area of the LLZ and GP with angular sector limits in degrees and distance limits from the transmitter in accordance with ICAO Annex 10 	
	 State that a warning flag will appear in the event of a GP failure 	
	 Errors and Accuracy 	
	 Interpret incorrect glide paths caused by side-lobe radiations above the correct G/P. 	
	 Describe and interpret the effects on indications of 	
	– beam bends	
	– scalloping	
	– beam noise	
	 Explain why the accuracy requirements are progressively higher for CAT I, CAT II and CAT III ILS 	
	 For the signals of the ILS ground installation, state the vertical accuracy requirements above the 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	threshold for CAT I, CAT II and for CAT III	
	 Identify the existence of requirements for ground installation, aircraft installation and the qualification of the crew for each category 	
	 Illustrate the function of the monitor stations 	
	 Factors affecting Range and Accuracy 	
	 Define the critical area in terms of 	
	 defined dimensions about the LLZ and GP antennas where vehicles are excluded during all ILS operations 	
	 unacceptable disturbance to the ILS signal. 	
	 Define the sensitive area in relation to: 	
	 critical area 	
	 possible disturbances of the ILS-signal 	
	 dimensions depending on the object creating the disturbance 	
	 Describe the influence of snow and heavy rain on the ILS signal 	
	 Describe the effect of FM broadcast stations that transmit on frequencies just below 108 MHz and the function of a FM immune filter. 	
062 01 06 00	MLS (micro landing system)	
	– Principles	
	 Describe the information provided by MLS in terms of: 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 horizontal course guidance during the approach 	
	 vertical guidance during the approach 	
	 horizontal and vertical course guidance for departure and missed approach 	
	 DME distance 	
	 transmission of special information regarding the system and the approach conditions 	
	 Identify the frequency band and the number of available channels 	
	 Explain the reason why MLS will be installed at airports on which, as a result of the effects of surrounding buildings and/or terrain, ILS siting is difficult. 	
	 Explain the working principle in terms of: 	
	 time referenced scanning beam 	
	 elevation and azimuth antenna 	
	 forward and backward sweep 	
	 constant angular velocity 	
	 time interval 	
	 angular deviation from desired course and desired elevation 	
	– DME-P,	
	 three dimensional position 	
	 Presentation and interpretation 	
	 Interpret the display of airborne equipment designed to continuously show the position of the aircraft, 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	in relation to a pre-selected course and glide path along with distance information, during approach and departure.	
	 Define the special data in terms of: 	
	 station identification 	
	 system condition 	
	 runway condition 	
	 weather information. 	
	 Explain that segmented approaches can be carried out with a presentation with two cross bars directed by a computer which has been programmed with the approach to be flown 	
	 Illustrate that segmented and curved approaches can only be executed with DME-P installed 	
	 Explain why aircraft are equipped with a multi mode receiver (MMR) in order to be able to receive ILS, MLS and GPS 	
	 Explain why MLS without DME-P gives an ILS look-alike straight line approach 	
	 Coverage and range 	
	 Describe the coverage area for the approach direction in angular terms horizontally on both sides, vertically and in distance from the beacon (according to ICAO annex 10) 	
	 Errors and accuracy 	
	 State the 95% lateral and vertical accuracy within 2 NM (3.7 km) of the MLS approach reference datum and 60 ft above the MLS datum point (according to ICAO annex 10) 	
	 Factors affecting range and accuracy 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe how the reflection of MLS signals by buildings and/or obstacles can be avoided by interrupting the scanning beam 	
062 02 00 00	BASIC RADAR PRINCIPLES	
062 02 01 00	Pulse Techniques and Associated Terms	
	 Name the different applications of radar with the associated wavelength of the radar signals with respect to ATC, MET observations, airborne weather radar and navigation 	
	 Describe the echo principle on which primary radar systems are based. 	
	 Describe how the plan position indicator (PPI) utilises a cathode ray tube to give analogue target depiction, by distance and direction. 	
	 Sketch the radar lobe generated by reflection in a parabolic reflector or by interference from out-of-phase radiation from a flat-plate antenna. 	
	 State the influence of the size and shape of an antenna on the size of main lobe and side lobes 	
	- Explain, in general terms, how a side lobe suppressor avoids answers on interrogations via side lobes	
	 Explain the relationship between the maximum theoretical range and the pulse repetition frequency (PRF) 	
	 Calculate the max. theoretical range if the PRF is given 	
	 Show the relationship between the display on the second deflection sweep, dead time, and theoretical range. 	
	 Define radial and azimuth resolution, target size and stretching 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Calculate the radial resolution if the pulse length is given 	
	 Calculate the azimuth resolution if the beam width is given 	
	 Calculate the minimum range if the pulse length is given 	
	 Explain the dependence of the wavelength and pulse repetition interval on the range 	
	 Explain the need to harmonise the rotary speed of the antenna, the pulse duration, the pulse repetition frequency for optimum scanning rate, focussing and transmission power. 	
	 Describe, in general terms, the effects of the following factors with respect to the quality of the target depiction on the PPI: 	
	 atmospheric conditions: super refraction and sub refraction 	
	 attenuation with distance 	
	 condition and size of the reflecting surface 	
	 Mention the use of permanent-echo erasure (moving target indication, MTI) 	
	 Calculate the distance to the radar horizon in NM 	
062 02 02 00	Ground radar	
	– Principles	
	 Explain the need for the differences in wave length and RPM of the primary radar systems used by the air safety authorities: 	
	 RSR (En-route Surveillance Radar) 	
	 TAR (Terminal Area Surveillance Radar) 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 PAR (Precision Approach Radar) 	
	 ASDE (Airport Surveillance Detection Equipment) 	
	 Explain why the RSR needs a longer pulse-length and lower antenna RPM than a short range radar like the ASDE 	
	 Define a Surveillance Radar Equipment (SRE) approach in terms of radar vectors 	
	 Define a PAR (GCA) approach in terms of radar vectors 	
	 State on which aerodromes, military or civil, PAR and SREs are used 	
	 Explain why a PAR needs two antennas 	
	 Explain why echoes that do not change in distance from the antenna, (i.e. relative speed zero), measured between subsequent hits of radar pulses, are dangerous with respect to ground radars equipped with a moving target indicator (MTI) 	
	 Explain the cause of second trace returns 	
	 Explain how second trace returns from the radar screen are removed by staggering the pulse repetition. 	
	 Presentation and Interpretation 	
	 State (for RSR, TAR, PAR and ASDE) that, using a plan position indicator (PPI), it is possible to obtain measurements of bearings, distances and/or elevation. 	
	 Interpret an azimuth/elevation screen with two separate parts indicating the position in relation to the centreline and in relation to the glide path 	
	 Explain the relationship between the direction in which the antenna is transmitting and the direction of 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	the primary blips of aircraft on a RSR, PAR and ASDE screen	
	 Explain the relationship between the travelling time of the radar pulse and the corresponding distance of the primary blips of aircraft on a RSR, PAR and ASDE screen 	
	 Coverage and Range 	
	 State typical ranges for the following different ground radar types: 	
	 En-route Surveillance Radar (RSR) 	
	 Terminal Area Surveillance Radar (TAR) 	
	 Precision Approach Radar (PAR) 	
	 Airport Surveillance Detection Equipment (ASDE) 	
	 Errors and Accuracy 	
	 State the azimuthal resolution in relation to the beam width 	
	 Calculate the radial resolution 	
	 Factors affecting Range and Accuracy 	
	 Explain how super refraction can extend the detection range of objects close to the earth's surface. 	
	 Explain how sub refraction can decrease the detection range of objects close to the earth's surface. 	
	 State, in general terms, the rate of absorption and reflection of radar waves of different wave lengths by all kinds of precipitation 	
	 State the relationship between the wavelength and the dimensions of the reflecting object to the reflectability (e.g. radar waves of 10 cm do not reflect from rain drops) 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
062 02 03 00	Airborne Weather Radar	
	– Principles	
	 List the two main tasks of the weather radar in respect of weather and navigation 	
	 Identify the wavelength 	
	 Explain how the aerial is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system 	
	 Calculate the beam width in relation to wavelength and antenna diameter with the formula: beam width in degrees = 70 x wavelength / antenna diameter 	
	 Describe the two different antenna shapes with the associated radiation patterns 	
	 Explain how, besides a cone shaped radiation pattern, a parabolic antenna can also transmit a fan shaped beam (cosecant square) 	
	 Explain why a flat plate antenna should be tilted down for ground mapping 	
	 Indicate the movement of the antenna either in the horizontal plane or tilted in relation to the horizontal plane, depending on the setting of the tilt 	
	 Describe the pencil beam (conical shaped) of about 3° to 5° beam width used for weather depiction (NORM or WX) 	
	 Presentation and Interpretation 	
	 State the functions of the settings of control knobs on the CDU : 	
	 function switch, with settings WX, WX+T, WX (var), MAP, Gain, Normal Contour Intensity 	
	 range switch (e.g. 20, 50, 150 NM) 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– tilt	
	 Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation 	
	 Illustrate the use of azimuth marker lines and range lines in respect of the relative bearing and the distance to a thunderstorm or to a landmark on the screen 	
	 Coverage and Range 	
	 Calculate the range 	
	 Name the practical range for weather radar and for navigation 	
	 Explain how the sector sweep of the antenna is sufficient to provide for the needs of the role of the equipment 	
	 Errors and Accuracy 	
	 Calculate the radial resolution 	
	 Calculate the azimuthal resolution 	
	 Factors affecting Range and Accuracy 	
	- Explain the danger of the area behind heavy rain (shadow area) where no radar waves will penetrate	
	 State the effect on radar energy of: 	
	 water in the antenna radome 	
	 ice on the radar radome 	
	 Explain how radar information can be improved by adjusting the gain properly, especially in the 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	mapping mode	
	 Explain why the tilt setting should be higher when the selected range increases and/or when the aircraft descends to a lower altitude 	
	 Explain why the tilt setting should be lower when the selected range decreases and/or when the aircraft climbs to a higher altitude 	
	 Explain why a thunderstorm may not be detected when the tilt is set too high 	
	 Navigation Application 	
	 Describe the navigation function of the radar in the mapping mode 	
	 State the limitations of the navigation function 	
	 Explain why, for long range, a pencil beam is more useful than a cosecant square beam 	
	 Calculate the true bearing (TB) when the relative bearing (RB) and the compass heading (CH) are given. 	
	 Calculate the range by correcting for the slant range 	
	 Plot the position on a navigation chart using the bearing and distance to a conspicuous point. 	
	 Describe the use of the weather radar to avoid a thunderstorm (Cb) 	
	 Explain why clear air turbulence (CAT) can not be detected with a weather radar 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Identify the ground antenna 	
	 Sketch the radiation pattern of a rotating slotted array which transmits a narrow beam in the horizontal plane 	
	 Sketch the radiation pattern of the antenna of the aircraft which transmits omnidirectionally 	
	 Define the terms: 'interrogator' (on the ground) and 'transponder' (in the aircraft) 	
	 Explain that information from primary radar and secondary radar can be combined and that the radar units may be co-sited. 	
	 Explain the advantages of SSR over a primary radar 	
	 Explain the following disadvantages of SSR: 	
	 code garbling of aircraft less than 1.7 NM apart measured in the vertical plane perpendicular to and from the antenna 	
	- 'fruiting' which results from reception of replies caused by interrogations from other radar stations	
	 Presentation and Interpretation 	
	 Explain how an aircraft can be identified by a unique code 	
	 Illustrate how the following information is presented on the radar screen: 	
	 the pressure altitude 	
	 the flight level 	
	 the flight number or aircraft registration 	
	 the ground speed 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Name and interpret the particular codes 7700, 7600 and 7500 	
	 Describe how the antenna is shielded when the aircraft banks 	
	 Interpret the selector modes: OFF, Stand by, ON (mode A), ALT (mode A and C) and TEST 	
	 Explain the function of the emission of a SPI (Special Position Identification) pulse after pushing the ident button in the aircraft 	
	 Modes and Codes, including mode-S 	
	 Explain the function of the three different modes: 	
	– mode A	
	– mode C	
	– mode S	
	 Explain why a fixed 24 bits address code will avoid ambiguity of codes 	
	 Explain the need for compatibility of mode S with mode A and C 	
	 Interpret the terms: selective addressing, mode 'all call' or selective calling 	
	 State the possibility of exchanging data via communication protocols 	
	 Name the advantages of mode S over mode A and C 	
062 02 05 00	Use of Radar Observations and Application to In-flight Navigation	
	 Illustrate the possibility of determining the position of an aircraft by reading bearing and distance off the radarscope with the aid of electronic devices like Electronic bearing Lines and Variable Range Ring 	
	 Explain the need for radar observations of aircraft by Air Traffic Control 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 State the two main functions of the ground radar used by the ATC (TCAS: 022 03 04 00) 	
062 05 00 00	AREA NAVIGATION SYSTEMS	
062 05 01 00	General philosophy	
	 Use of radio navigation systems or an inertial navigation system 	
	 Define RNAV using the terms: 	
	 method of navigation 	
	 aircraft operation on any desired course 	
	 coverage of station referenced navigation signals 	
	 limits of self-contained capacity 	
	 Describe how RNAV routes are developed to allow navigation outside standard routings so as to decrease traffic congestion and make optimum use of the available airspace 	
	 Indicate the role of radionav. systems and/or dead reckoning systems in respect of the most accurate and continuously updated position 	
	 Identify the navigational sources for RNAV equipment used to calculate position, route information, heading to steer, ground speed, wind, distances to go, cross track distances, drift angle, track angle error and wind. 	
	 Give a brief description of the navigational functions of the following components to be used for area 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	navigation	
	 a Navigation Computer Unit (NCU) 	
	 a flight data storage unit 	
	 a control display unit 	
	 a Radio Magnetic Indicator (RMI) 	
	 a Horizontal Situation Indicator (HSI) 	
	 an air data computer 	
	 a compass system 	
	 IRS and ILS/MLS/VOR/DME/GNSS receivers 	
062 05 02 00	Typical Flight deck Equipment and Operation (also mentioned in 022 00 00 00)	
	 Explain that area navigation may be executed by flight management and guidance systems (FMS) 	
	 Describe 3-dimensional RNAV in terms of lateral and vertical navigation 	
	 Identify the following functions: navigation, lateral and vertical flight planning, performance management, control of AP/FD and auto thrust (A/THR), flight envelope computations and display management 	
	Name the following main components and describe, in general terms, their individual functions :	
	 flight management and guidance computer 	
	 multipurpose control and display unit 	
	 flight control unit 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 flight management source selector 	
	 display system 	
	 Identify and interpret the information presented by the Electronic Flight Instrument System (EFIS) on the Primary Flight Display (PFD) and the Navigation Display (ND) in accordance with the Boeing 737-800 concept or on conventional instruments 	
	 State the period of validity of the navigational data base for a Flight Data Storage Unit 	
	 Explain the function of the following data in the database of FDSU: 	
	 way-points, airways and company routes for flight planning 	
	 frequencies/ position and range of the different navigation beacons 	
	 holdings, airports, runways, SID's, STARS and procedures for departure and arrival 	
	 additional new way-points, nav. aids and runways defined by the pilot 	
	 State the necessity for a performance data base to carry out flight envelope computations 	
	 Explain the purpose of the following functions of a FMS: 	
	 navigation of the aircraft in the horizontal and vertical plane by position fixing 	
	 performance optimisation and flight envelope computations by the FMC (flight management computer) 	
	 the interaction possibilities between pilot and FMS by means of display management and CDU 	
	 Interpret the following guidance modes: 	
	 managed guidance in which the aircraft is automatically guided on the pre-planned route, altitude and speed profile by the FMS 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 selected guidance in which the aircraft is controlled to the selected value of a given parameter e.g. heading hold, fixed IAS/Mach to be selected on the Flight Control Panel (FCP) 	
	 State and interpret the four possible modes of operation for dual FMC installations: 	
	 <u>dual</u>: in which one FMC provides the master function and the other the slave function and selections and where inputs into one FMS are passed on to the other 	
	 <u>independent</u>: in which there is no communication between the two flight management systems 	
	 <u>single</u>: in which only one FMS is operational 	
	 <u>back up navigation</u>: in which there is limited use of the FMS functions as a result of flight management computer failures 	
	 State that, in the master/slave and in the independent mode, the navigational values presented on the EFIS and CDU may differ 	
	 Explain the master/slave function in the dual mode 	
	 Means of Entering and Selecting Way-points and Desired Track Angle (course) information (keyboard entry system) 	
	 Name and describe the methods of entering and selecting way-points, SIDs and STARs and desired course information with respect to the terms: 	
	 standard company route 	
	 ICAO designator of the departure and the destination aerodrome. 	
	 airway designator 	
	 way-points, using their designators. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 way-points, by using their lat./long co-ordinates or range and bearing 	
	 Explain why the gate position should be entered before the automatic alignment of the IRS /INS 	
	 Identify the sources for position processing 	
	 Means of Selecting, tuning and identifying ground stations 	
	 Explain why the IRS is called a self-contained system 	
	 Explain the auto-tune function of modern RNAV equipment 	
	 State that manual deselection/selection can be achieved by means of the MCDU 	
	 Explain the back up function of modern RNAV equipment for VOR/LOC approaches 	
	 Explain the need to tune the conventional VOR/DME receivers for raw data information to verify that they are correctly positioned on the RNAV equipment's numeric CDUs or on the navigation display 	
	 Explain that the user may delete satellites (that GPS automatically selected) in order to obtain the best geometry 	
	 List the hierarchy of nav aids for positioning 	
	 Define the modes radio/inertial, inertial and dead reckoning 	
	 Explain, using the rules of statistics, the validity of the triple mixed position, as determined from the positions given by three inertial reference units 	
	 Define the term 'hybrid navigation' 	
	 Explain the function of the navigational filter which derives a position error vector that points from the mixed (or single) IRS-position towards the FMS-position 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain why the accurate development of the position error vector needs radio measurements 	
	 Explain the reason why the various navigation sensors must have complementary error characteristics, e.g. noise errors against drift errors, for optimisation of hybrid navigation 	
	 Explain how the IRS achieves very good short term stability but poor long term stability 	
	 Give the reason why radio nav systems have poor short time stability and good long time stability 	
	 Explain (in cases of additional estimation and calibration of velocity, attitude and sensor errors) that the error vector can be further developed by the filter over a specified period of time, in spite of the absence of measurement data (i.e. radio, GPS) 	
	 Explain the importance of the quality and complexity of the Kalman filter design 	
	 State for which radio positioning facilities rho-rho and rho-theta algorithms are used 	
	 Indicate that a first update of the FMS-position is automatically performed before take off 	
	 Instrumentation for en-route track (course) guidance 	
	 Explain the use of the magnetic variation stored in the memory 	
	 Name and interpret the following items of a lateral flight plan: 	
	 take off runway 	
	 SID and en-route transition 	
	 en-route way-points and/or airways 	
	 en-route transition and STAR 	
	 missed approach 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 alternate flight plan 	
	 List the stages of a flight in which a lateral revision of the flight plan is possible 	
	 Describe the use of the vertical revision function in respect of changes to: 	
	 speed limits in climb and descent phases 	
	 altitude-, speed- and time constraints 	
	 step climb and step descent 	
	– wind data	
	 Instrumentation for presenting distance traveled, distance to go and ground speed information only valid for some type of systems). 	
	 Name and indicate the use of the EFIS presentation for en-route course guidance in respect of the following: 	
	 the presentation of the current position in relation to a reference line or the intended track on the display 	
	 the present co-ordinates 	
	 the numerically and graphically presentation of the desired track angle and the distance to next way-point and aircraft heading, track and drift angle 	
	 the presentation of the cross track error (XTK) and track angle error (TKE) 	
	 Instrumentation for presenting current position data 	
	 State the manner of presentation of the current position data on the CDU and on the navigation 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	display of the EFIS	
062 05 03 00	Instrument Indications	
	 Illustrate the presentation of the cross track error on the HSI in elderly models with the RNAV coupled 	
	 Interpret the cross track error presentation on the CDU display of some equipment showing a reference line in the middle, an aircraft symbol and some guidance lines 	
	 Interpret the presentation of the route structure when RNAV is coupled with flight instrument displays such as EFIS 	
062 05 04 00	Types of Area Navigation Systems Input	
	 Self-contained on-board systems (inertial navigation systems, Doppler) 	
	 Indicate that the present position on the CDU (of self-contained navigation systems), whether in geographic coordinates or graphical form, is used as an input. 	
	 External Sensor Systems 	
	 For position fixing with radio nav aids, indicate the type of raw data delivered from: 	
	– GPS:	
	– DME/DME	
	– VOR/DME	
	– Inputs	
	 Name the required air data inputs for an area navigation system. 	
062 05 05 00	VOR/DME Area Navigation (RNAV)	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	Principle of Operation	
	 State the use of VOR/DME data in relation to phantom stations 	
	 Name the data to be entered into the control display unit (of the RNAV system) in order to define a phantom station. 	
	 Advantages and Disadvantages in the Use of RNAV 	
	 State the advantages of the RNAV system in terms of: 	
	 full use of the airspace 	
	 availability of phantom way-points 	
	 Explain the following disadvantage of the RNAV system: 	
	 phantom stations can only be defined within the range of the VOR/DME stations used 	
	 Accuracy, Reliability, Coverage 	
	 Explain how accuracy and reliability of navigation (using the RNAV system) is affected by the following factors: 	
	 path deflection of radials 	
	 slant range error of DME 	
	 Flight Deck Equipment 	
	 Describe, briefly and in general terms, the following components of the flight deck equipment of the RNAV system 	
	– computer	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 simple CDU (control display unit) 	
	 CDI (course deviation indicator), RMI (radio magnetic indicator) or HSI (horizontal situation indicator 	
	 Interpret read outs of CDU and CDI/HSI/RMI 	
062 05 06 00	Flight Director and Auto-pilot Coupling	
	- State that it is possible to couple the flight director (FD) and/or the auto pilot (AP) to the RNAV system	
062 06 00 00	SELF CONTAINED AND EXTERNAL-REFERENCED NAVIGATION SYSTEMS	
062 06 01 00	Doppler (No objectives necessary, Doppler not in use in transport fixed wing aviation))	
	 Principles of operation (airborne system) 	
	 Identify the frequency band and the wavelength of Doppler radar 	
	 Explain, in outline, the basic principle of the Doppler effect. 	
	 Analyse the term Doppler shift 	
	 State and interpret the Doppler formula (FD=RREC-FTRANS) 	
	 Identify the antenna type used for Doppler radar 	
	 Describe the properties of stabilised and strapped-down antennas 	
	 Describe the properties of the Doppler beam referring to 	
	 beam width 	
l	 vertical and horizontal angle 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Ground Speed and Drift Calculation 	
	 State that Doppler radar functions by continuous measurement of Doppler shift converting the measured values to: 	
	 ground speed (GS) 	
	 drift angle (DA) 	
	 Advantages and Disadvantages of Doppler Radar 	
	 State the advantage of Doppler radar in terms of an on board autonomous system 	
	 State the disadvantages of Doppler radar referring to errors induced by variations in surface reflection (e.g. sea bias) and errors induced by the compass system 	
	 Accuracy and Reliability 	
	 State that the accuracy and reliability of the measured Doppler values depends on the quality of the reflected signals 	
	 Interpret the quality of Doppler signals reflected from various types of surfaces (e.g. still water, rough water, sand) 	
	 State that the along track error is smaller than the cross track error causing an elliptical shape of position errors 	
	 Flight Deck Equipment 	
	 Describe the function of the switches on the Doppler control panel: 	
	– STBY/DR	
	 slew switch 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 land/sea switch 	
062 06 02 00	Very low frequency systems - Omega (Outdated system, not available since Sept 1997)	
062 06 03 00	Loran-C (to be shut down in the US after the year 2000)	
	 Principle of Operation 	
	 Explain that Loran-C is a hyperbolic navigation system 	
	 Describe briefly the Loran principle of operation using the terms: 	
	 "Master" and "Secondary" transmitters. 	
	 propagation delay time difference 	
	– hyperbolas	
	 State and define the notions "Base Line", "Bisector Line" and "Base Line Extension". 	
	 Name the transmitting sequence of the stations is Master and slaves, resp. w, x, y and z 	
	 Describe, briefly, the use of ground waves in relation to the basic accuracy of Loran-C 	
	 Name the working frequency and the range of the ground wave over land and over water 	
	 State that each transmitter emits omni-directional signals consisting of groups of pulses. Specify the advantage of a pulse group in stead of a single pulse 	
	 Explain the necessity of a Secondary-specific delay between master and secondary transmission, (Emission Delay or coding delay) 	
	 Explain that the lines of position form unambiguous hyperbola families. These are normally processed for use on special charts or in computers 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the reason for different Pulse Repetition Intervals 	
	 Explain how a Loran C chain is designated in reference to the Group Repetition Interval 	
	 Explain that certain values of 'propagation delay' time differences are always measured in every chain as follows: 	
	 Base line extension from secondary transmitter : secondary-specific delay 	
	 Right bisector : secondary-specific delay plus master/secondary propagation delay time 	
	 Base line extension from master transmitter : secondary-specific delay plus 2 x master/secondary delay plus propagation delay time 	
	 Explain that phase difference measurements (between master and secondary signals), obtained by using the carrier wave, give results with an accuracy of <u>+</u>10 µs 	
	 Give the reason why Cycle Matching is done at the end of the third cycle 	
	 Define and explain additional secondary phase factors (ASF) corrections 	
	 Apply sky wave corrections 	
	 State availability of Loran-C 	
	 State that modern receivers have software to calculate the position in lat. long co-ordinates 	
062 06 04 00	Decca navigation system (will not be continued after the year 2000)	
	 Illustrate a Decca chain consisting of a master and three slaves (identified respectively as red, green and purple) and explain why different frequencies are used for each master/slave pair. 	
	 Explain why the Line Of Position (LOP) is a hyperbolic line determined by phase difference measurement. 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define a zone, lane and lane numbers 	
	 Explain why the lane numbers have to be set by the navigator or that, in modern equipment, the dead reckoning position has to inserted 	
	 State that the process of lane identification is made possible by the use of the 'multipulse' system 	
	 Identify the areas in which Decca is available 	
	 Give the reason why the coverage is limited to max. 300 NM by day and 200 NM by night from the baseline 	
	 Apply corrections for delay in propagation (using the Decca datasheets) 	
	 State that modern receivers have software which calculates the position in lat./ long co-ordinates 	
	 Explain why Decca, on search and rescue helicopters and coastal vessels, has been replaced by GPS 	
062 06 05 00	Global Navigation Satellite Systems GNSS: GPS/ GLONASS	
	 State the basic differences between the NAVSTAR/GPS system (GPS) and the GLONASS system regarding ellipsoid, time, satellite configuration, codes and frequencies 	
	 Principles of System Operation 	
	 State the four basic information elements supplied by GPS-Navstar. 	
	 Explain why the measured distances are called pseudo ranges 	
	 Explain why the minimum requirements, to establish the 3 spatial co-ordinates and a possible error in the receiver clock, consist of the measured distances to 4 satellites and a dead reckoning(DR) 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	position.	
	 Define the use of the Keplerian orbit data. 	
	 Describe the geometrical interpretation of the position fix using four spherical surfaces, with the satellite being in each case located at the centre of the sphere involved 	
	 Name the synchronous time system used in the satellites 	
	 Describe the C/A, P and Y code and state the use of these codes 	
	 Explain how pseudo range measurement is achieved using satellite signals 	
	- State that the conversion of pseudo ranges is carried out, by means of transformation equations, in order to obtain geodetic co-ordinates ($φ$, $λ$) and altitude over a reference ellipsoid.	
	– Basic GPS segments	
	 Control segment 	
	 List the components of the control segment 	
	 Describe the tasks of the Control segment 	
	 Space segment 	
	 Describe the satellite constellation concerning number of satellites, inclination of orbits, altitude and orbital period 	
	 State the different types of satellites 	
	 Describe the types and amounts of clocks in the satellites and the way to obtain the exact GPS time 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Identify the main task of the space segment 	
	 User segment 	
	 Interpret the 3 categories of GPS receiver architecture: multi channel, multiplex and sequential 	
	 Explain why multi channel receivers are preferred for aviation 	
	 State the current use of GPS 	
	 Navigation performance 	
	 Explain the following terms in relation to the horizontal 95% accuracy: 	
	 Selective Availability (S/A) 	
	 Standard Positioning Service (SPS) 	
	 Precision Positioning Service (PPS) 	
	 Explain the term integrity in relation to GPS receivers 	
	 RAIM (receiver autonomous integrity monitoring) 	
	 Integrity messages from earth stations or communication satellites 	
	 State the availability of GPS 	
	 Explain that the continuity is interrupted by switching to another satellite for the best GDOP 	
	 State the applications of GPS 	
	 Interpret the following Special Applications of GPS 	
	 precise time measurement and time interval measurement 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 altitude determination 	
	 Define the following Future Applications of GPS 	
	 Enhanced Ground Proximity Warning System (EGPWS) 	
	 Automatic Dependent Surveillance Broadcast (ADS-B) 	
	 Satellite Constellation and Geometric Dilution of Precision 	
	 Define the following parameters relating to GPS orbital configuration: 	
	 orbit semi-major axis 	
	 satellite ground tracks up to 55°N/S 	
	 orbit satellite phasing 	
	 satellite visibility angle, 	
	 mask angle 	
	 satellite coverage 	
	 Explain the use of Keplerian elements in respect of the orbit 	
	 Explain how the actual position of the satellite is found 	
	 Illustrate the use of the (X, Y, Z) Earth Centred/ Earth Fixed co-ordinate system to define position vectors 	
	- Explain, in qualitative terms, how (x, y, z) co-ordinates can be transformed to co-ordinates (ϕ , λ , h) on the WGS-84 or on any other ellipsoid	
	 Indicate the influence of the following perturbation factors 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	- solar wind	
	 gravitation of sun, moon and planets 	
	 Define the following terms: 	
	 Geometrical Dilution of Precision (GDOP) 	
	 Position Dilution of Precision (PDOP) 	
	 Horizontal Dilution of Precision (HDOP) 	
	 Vertical Dilution of Precision (VDOP) 	
	 Time Dilution of Precision (TDOP) 	
	 User Equivalent Range Error (UERE) 	
	 Indicate the influence of elevation angle on dilution of precision 	
	 Explain the influence of dilution of precision on navigational accuracy 	
	 GPS Signals and Navigation Messages 	
	 Name the desired GPS navigation signal properties and signal specifications 	
	 Describe the GPS signals with reference to the following aspects: 	
	 – GPS frequencies 	
	 signal characteristics: spread spectrum 	
	 signal structure, pseudo-random noise P and C/A codes, navigation message 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe the level of the receiver Signal-to-Noise Ratio 	
	 Describe the navigation message and list the data in the 5 different subframes 	
	 Explain the relevance of ionospheric delays and indicate how their values are determined 	
	 Illustrate the relationship between the satellites and the control segment in respect of signal formation and transmission 	
	 GPS Generic Receiver Description 	
	 Name the basic elements of a GPS receiver 	
	 Name the primary information supplied by a GPS receiver: 	
	 Describe the presentation and interpretation of GPS data on a typical receiver type 	
	 Interpret GPS data presented on a control display unit 	
	 Name the requirements for GPS hardware and integration 	
	 Name the number of receiver channels required for various applications 	To be specified by JARFCL
	 Describe the cockpit equipment connected with GPS receivers 	According JAA leaflet 3,
	 Describe in general terms the signal processing 	TSO C129a, DO208, FAA
	 Explain the 12.5 minutes to read the complete almanac with the parameters of all the satellites 	AC's
	 In the algorithm to solve the position and receiver clock error from the pseudo range measurements, name the four unknown parameters. 	
	 Explain the following terms (in connection with the applications and the navigation algorithms) 	
	– pseudo-range	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Doppler shift 	
	 phase angle 	
	- Explain why, for accelerated satellite selection after a long suspension of use or a change in position,	
	 approximate position, time and date should be entered to shorten the search of the sky 	
	 time to first fix may take up to 15 minutes 	
	 Describe the operation after a short suspension 	
	 Define the term 'Time to First Fix' 	
	 Signal Perturbations and Errors 	
	 Describe the method of Selective Availability (S/A) as used in the GPS system 	
	 State the intended aim of S/A 	
	 Name the errors produced in the receiver 	
	 Name the cause and the behaviour of ephemeris errors 	
	 Name the errors produced in the troposphere and in the ionosphere in relation to the elevation and mask angle 	
	 Indicate the influence of multipath propagation of GPS signals on navigational accuracy 	
	 Interpret the two methods used for the mitigation of multipath effects: 	
	 special antenna design 	
	 design of software in the receiver 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the effect of masking of satellites 	
	 Name the influence of satellite clock errors on the accuracy of GPS navigation 	
	 State possible interference sources for, and their effects on, a GPS C/A receiver 	
	 Differential GPS and Integrity Monitoring 	
	 Explain the elementary principle of Differential GPS 	
	 Name the major categories of Differential GPS 	
	 Explain why, for Differential GPS, a ground-based reference station is required in order to obtain differential corrections 	
	 Name the method of error correction used in DGPS (data message, data links) 	
	 State which errors can not be diminished by DGPS 	
	 Describe the characteristics of local area differential GPS (LADGPS) with reference to : 	
	 differential corrections 	
	 integrity messages 	
	 reference station in the vicinity of e.g. an aerodrome 	
	 communication direct from ref. station to aircraft 	
	 Describe the characteristics of wide area differential GPS (WADGPS) with reference to : 	
	 differential corrections 	
	 integrity messages 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 more than one reference station in a nation or continent 	
	 communication from ref. stations via co-ordination centre to aircraft 	
	 Describe the characteristics of local area Augmentation system (LAAS) with reference to : 	
	 differential corrections 	
	 integrity messages 	
	 reference station in the vicinity of e.g. an aerodrome 	
	 communication direct from ref. station to aircraft 	
	 pseudolite(s) to improve the dilution of precision (DOP) 	
	 Describe the characteristics of Wide Area Augmentation (WAAS) with reference to : 	
	 differential corrections depending on lat./ long co-ordinates 	
	 integrity messages 	
	 reference stations in a wide area 	
	 communication from co-ordination centre station via INMARSAT satellites to aircraft 	
	 INMARSAT satellites with nav. channel 	
	 Describe the characteristics of European Geostationary Navigation Overlay System (EGNOS) including reference to : 	
	 integrity messages 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 reference stations in the whole of Europe 	
	 communication from co-ordination centre station via INMARSAT satellite to aircraft 	
	 two INMARSAT satellites, Atlantic Ocean Region East and Indian Ocean Region, with nav. channel 	
	– Pseudolites	
	 Describe the principle of the use of pseudolites 	
	 Name the data given by an integrated DGPS/Pseudolite installation: 	
	 Indicate the required aircraft antenna locations for GPS and for a pseudolite 	
	 Define 'Receiver Autonomous Integrity Monitoring' (RAIM) 	
	 State the minimum number of satellites necessary to perform RAIM 	
	 State the use of the failure detection and exclusion algorithm of RAIM 	
	 Integrated Navigation Systems using GPS 	
	 Define the term Multisensor System 	
	 GPS and INS Integration 	
	 State the advantages of GPS/INS integration with respect to redundancy and short and long term stability 	
	 Receiver Autonomous Integrity Monitoring (RAIM) Availability for GPS Augmented with Barometric Altimeter Aiding and Clock Coasting 	
	 Identify the possible extension of the use of RAIM to include barometric altimeter aiding and clock 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	coasting	
	 Combination of GPS and GLONASS 	
	 Explain the requirements of Civil Aviation with respect to the combined use of GPS and GLONASS 	
	 – GPS Navigation Applications 	
	 GPS Applications for Air Traffic Control 	
	 Interpret the application of GPS within the context of air traffic control for 	
	 oceanic control 	
	 enroute control 	
	 basic area navigation (cf. JAA Leaflet 2) 	
	- terminal control	
	 non-precision approaches 	
	 precision approaches 	
	– surveillance	
	 Name the required augmentations relating to the use of GPS for precision approaches 	
	 GPS Applications in Civil Aviation 	
	 Interpret the requirements for the use of GPS in Civil Aviation with respect to 	
	– dynamics	
	 functionality: GPS position integrated with Inertial positions presented on a (EFIS) screen 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	– accuracy:	
	en-route GPS,	
	non precision approaches: DGPS, WADGPS or WAAS	
	precision approaches LAAS and phase measuring	
	– availability	
	– reliability	
	 integrity by differential stations 	
	 The following are to be described by LO's at a future date when the system architecture has been clarified and the use of GPS for automatic landings is accepted: 	
	 Automatic Approach and Landing with GPS 	
	 Precision Landing of Aircraft using Integrity Beacons 	
	 Future Implementations 	