JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
061 00 00 00	GENERAL NAVIGATION	
061 01 00 00	BASICS OF NAVIGATION	
061 01 01 00	The Solar System	
	 Define the terms 'Declination', 'Hour Angle' and 'Altitude' in respect of astronomical bodies 	
	 State that the Solar System consists of the Sun, nine major planets (of which the Earth is one) and about 2000 minor planets and asteroids 	
	 Explain that the planets revolve about the Sun in elliptical orbits, each one taking a different amount of time 	
	 State the laws relating to the motion of planets in their orbits as evolved by Kepler 	
	 Explain in which direction the Earth rotates on its axis 	
	 Explain that the Earth revolves around the Sun along a path or orbit to which the Earth's axis is inclined at about 66½⁰ 	
	 Define the terms 'Apparent Sun' and 'Mean Sun' and state their relationship 	
	 Define the terms 'Ecliptic' and 'Plane of the Ecliptic' 	
	 Describe the effect of the inclination of the Earth's axis in relation to the declination of the Sun; seasons; time interval from sunrise to sunset at various latitudes and seasons 	
	 Define the terms 'Perihelion' and 'Aphelion' 	
	- Illustrate the position of the Earth relative to the Sun with respect to the seasons and months of the year	
061 01 02 00	The Earth	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 State that the Earth is not a true sphere. It is flattened slightly at the Poles 	
	 State that the Earth could be described as an 'ellipsoid' or 'oblate spheroid' 	
	 Explain that, when producing maps and charts, a reduced earth model is used and the compression factor is so small that it can be ignored. 	
	 Explain what is meant by the term 'Position Reference System' 	
	 Explain how a reference system may be developed on a plain sphere 	
	 Describe the position of the Poles and Equator on the Earth's surface 	
	 Explain that the Equator has its plane perpendicular to the Earth's axis and defines the East - West direction 	
	 Define a Great Circle in relation to the surface of a sphere 	
	 Explain the geometric properties of a great circle 	
	 Name examples of great circles on the surface of the Earth 	
	 Define a small circle in relation to the surface of a sphere 	
	 Describe the geometric properties of a small circle 	
	 Name examples of small circles on the surface of the Earth 	
	 Define latitude 	
	 Illustrate and explain the definition of latitude. 	
	 State the terms in which latitude is measured 	
	 Define Geographic/Geodetic and Geocentric Latitudes and explain their relationship 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 State the maximum difference between Geographic and Geocentric Latitudes. 	
	 Interpret a map/chart to locate a stated latitude 	
	 Calculate 'change of latitude (Ch.Lat) between two stated latitudes. 	
	 State the distance to which one degree of latitude equates 	
	 Convert Ch.Lat to distance 	
	 Define longitude. 	
	 Illustrate and explain the definition of longitude 	
	 State the terms in which longitude is measured 	
	 State that the Greenwich meridian is also known as the Prime meridian 	
	 Explain that the Greenwich anti meridian is the maximum longitude possible - 180° E/W. 	
	 Calculate change of longitude between any two stated meridians 	
	 Describe a meridian as a semi great circle which runs North and South from Pole to Pole 	
	 Explain that the meridians and their anti meridians complete a great circle. 	
	 Interpret a map/chart to locate a stated meridian 	
	 Explain how the meridian is used as the reference datum for angular measurement 	
	 Define a Rhumb line 	
	 Explain the geometrical properties of a rhumb line 	
	 Explain the term 'Convergency of the Meridians' 	
	 Explain that convergency between two meridians equals the angular difference between measurements 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	on the great circle at each of these meridians	
	 Explain how the value of convergency can be determined using either calculation or geometrical construction 	
	 Calculate the value of convergency between two stated meridians at a given latitude 	
	 Explain the Great circle - Rhumb line relationship 	
	 Explain the term 'conversion angle' (CA) 	
	 Explain how the value of CA can be calculated. 	
	 Carry out calculations involving the application of the concepts of great circles; convergency; rhumb line; conversion angle 	
	 Explain that along the Equator a difference of one degree in longitude represents a distance of 60 nm 	
	 Explain that because meridians converge towards the Poles the distance between meridians will reduce. 	
	 Explain at which latitude the maximum and minimum distance between two meridians will be. 	
	 Explain the connection between the cosine function and the calculation of Earth Distance 	
	 State that the Earth Distance (ED) along a parallel of latitude is also known as Departure. 	Using arguments of ChLon
	 Calculate the Earth distance between two meridians along a parallel of latitude 	and Latitude
	 Explain that, with latitude being defined as North and South of the Equator and longitude being defined as East or West of Greenwich meridian, each place on the Earth's surface will have a unique reference for its position 	
	 Interpret a map/chart to locate a position 	Given Latitude and longitude
061 01 03 00	Time and time conversions	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	Apparent time	
	 Explain that, because the Earth rotates on it's axis from West to East, the heavenly bodies appear to revolve about the earth from East to West 	
	 Define and explain the term 'transit' as applied to a heavenly body 	
	 Explain that the period of this apparent (real) revolution of the heavenly body is measured, the time elapsing between two successive transits is called a "day" 	
	 Explain what is meant by the term 'sidereal day' 	
	 State that the sidereal day is of constant duration 	
	 State that, because we measure the day by the passage of the sun, the length of the day varies continuously. 	
	 Explain the reasons for the variation in the length of the day. 	
	 Illustrate that, since both the direction of rotation of the Earth around its axis and its orbital rotation around the sun are the same, the Earth must rotate through more than 360° to produce successive transits 	
	 State that the period between two successive transits of the sun is called Apparent solar day and that the time based on this is called Apparent Time 	
	 State that the time of orbital revolution of the Earth in one year is constant at 365 days 5 hours 48 minutes 45 seconds mean time (365.24 days mean time). 	
	<u>Mean time</u>	
	 State that, in order to have a constant measurement of time which will still have the solar day as a basis, the average length of an apparent solar day is taken. This is called the Mean Solar Day. It is 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	divided into 24 hours of mean time	
	 Explain the concept of the mean sun, including the plane and period of its orbit in relation to the plane and period of the orbit of the apparent sun. State how the plane of orbit of the mean sun is related to the plane of the Equator 	
	 State that the time between two successive transits of the mean sun over a meridian is constant. 	
	 Define the term 'Equation of time' and state its relevance 	
	 State that the calendar year is 365 days and every 4th year is a leap year with 366 days and 3 leap years are suppressed every 4 centuries 	
	 State that time can also be measured in arc since, in one day of mean solar time, the mean sun is imagined to travel in a complete circle round the Earth, a motion of a 360°. 	
	 Illustrate the relationship between time and arc along the Equator 	
	 Deduce conversion values for arc to time and vice-versa 	
	Local Mean Time (LMT)	
	 State that the beginning of the day at any location is when the Mean sun is in transit with the anti meridian. This is known as midnight or 0000 hours LMT 	
	 State that when the Mean sun is in transit with the location's meridian it is noon or 1200 hours LMT and, when in transit with the anti meridian, it is again midnight or 2400 hours LMT 	
	 State that the LMT at locations in different longitudes vary by an amount corresponding to the change in longitude 	
	Universal Co-ordinated Time (UTC)	
	 State that the Greenwich meridian is selected as standard meridian from which all LMT's can be 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	referred	
	 State that LMT at Greenwich meridian is called Greenwich Mean Time (GMT) 	N.B
	 State that UTC is more accurately calculated than GMT but in practice is the same at GMT 	IAT does not appear in JAR-
	 State that UTC is regulated against International Atomic Time (IAT) 	FCL JAR 1; Annex 5 nor
	 Calculate examples of GMT/UTC and LMT conversions 	Doc8400/4
	 Calculate examples of GMT/UTC and LMT conversions 	With and without arc/time
	Standard Times (ST)	Conversion tables
	 State that standard time is the set time used by a particular country (or part of a country) determined by the government of that particular country 	
	 Explain that, in theory, standard time is based on the LMT 7.5° on either side of a regular meridian divisible by 15°. 	
	 State that, in practice, standard times do not necessarily follow the theory. The times vary in different countries and sometimes in different part of countries 	
	 State that Summer Time (daylight saving time) may be used 	
	 State that Standard Time corrections should be checked from documents 	
	 Extract Standard Time corrections from appropriate documents 	
	 Convert UTC to ST and ST to UTC 	Given appropriate data
	 International Dateline 	
	 Explain the effect, on the LMT, of approaching the 180° meridian line from either side 	
	 Explain that, when crossing the anti meridian of Greenwich, one day is gained or lost depending on 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	direction of travel	
	 State that the dateline is the actual place where the change is made and, although mainly at the 180° meridian, there are some slight divergences in order to avoid countries being cut out by it 	
	 State that, when calculating times, the dateline is automatically taken into account by doing all conversions via GMT/UTC 	Given 'Arc to Time' tables
	 Calculate conversions of LMT and GMT/UTC and ST for cases involving the International dateline 	and lists of ST corrections
	 Determinations of Sunrise (SR) and Sunset (SS) 	
	 State that SR or SS is when the sun's upper edge is at the observer's horizon. State how atmospheric refraction affects this apparent sighting 	
	 State that, except in high latitudes, the times of SR and SS at any place changes only little each day. The time of occurrences at specified latitudes on the Greenwich meridian may therefore be taken as the same for all longitudes 	
	 State that SR and SS times are tabulated against specified dates and latitudes. The times are LMT 	
	– State that at equator SR is always at ≈ 0600 and SS at ≈ 1800 LMT	
	 Calculate examples of SR and SS in LMT, ST or UTC 	Given tables
	 Civil Twilight 	
	 Explain the meaning of the term 'twilight' 	
	 Define the term 'civil twilight' 	
	 State that the beginning of morning Civil twilight and the end of evening Civil twilight has been tabulated in LMT with latitude and date as the entering arguments 	
	 Define the term 'Duration of Civil Twilight 	Given astronomical tables

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Calculate examples of twilight in LMT, ST or UTC 	
	 Determine the 'Duration of Civil Twilight' for morning and/or evening 	
	 Explain the effect of declination and latitude on the duration of twilight 	
061 01 04 00	Directions	
	- True Directions	
	 State that all meridians run in north-south direction and the true north direction is along any meridian toward the true north pole 	
	 State that true directions are measured clockwise as an angle in degrees from true north 	
	 Magnetic Directions 	
	 State that a freely suspended compass needle will turn to the direction of the local magnetic field. The horizontal component of this field is towards magnetic north 	
	 Define the term 'Magnetic Meridian' and name the angle contained between the true and magnetic meridians 	
	 State the terms in which variation (VAR) is measured and annotated 	
	 Define the term 'Isogonal' 	
	 State that the magnetic variation varies due to the movement of the magnetic north pole rotating around the true north pole in an easterly movement once every 960 years 	
	 Explain the term 'Agonic' line 	
	 Define dip or inclination in relation to a freely suspended magnetic needle 	
	 Explain the terms 'Magnetic Equator' and 'Aclinic Line' 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 State the angle of inclination at the magnetic poles 	
	 State that, in polar areas, the horizontal component of the Earth's field is too small to permit the use of a magnetic compass 	
	 Compass Directions 	
	 State that, in a standby type of compass, the magnetic element will align along the magnetic field which is a resultant of the earth's magnetic field, the magnetic field of the aeroplane and the effects of attitude and movement of the aircraft 	
	 State that the effect of the aircraft magnetism (on the compass) changes with different headings as well as different magnetic latitudes 	
	 State that the angle between the magnetic north and compass north is called deviation (DEV) being measured in degrees East (Positive) or West (Negative) of magnetic North 	
	 Convert between compass (C) magnetic (M) and true direction (T) 	Given appropriate values
	– Gridlines	
	 Explain the purpose of a Grid datum (G) based on a suitable meridian 	
	 Explain that the gridlines or the grid meridians are drawn on the chart parallel to the Datum Meridian 	
	 Define the term 'Grid convergence' 	
	 State that it is named east or west according to the direction of True North relative to Grid North 	
	 State that the sum of Grid Convergence and variation is called Grivation 	
	 State that a line joining points which have the same grivation is called an isogriv 	
	 Calculate examples of directions converting between Grid (G), True (T), Magnetic (M) and Compass (C) 	Given appropriate values

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
061 01 05 00	Distance	
	 Explain how a nautical mile at any place on the Earth's surface is measured assuming the Earth to be a perfect sphere 	
	 State that because latitude is measured along meridians, it makes it possible to calibrate the meridians in nautical miles, i.e. 1' of latitude is one nautical mile and 1° is 60 nm 	
	 Explain that a nautical mile varies a little because the Earth's shape is an oblate spheroid 	
	 Explain how altitude affects the Arc/Distance relationship 	
	 Define the terms 'Nautical Mile; 'Statute Mile'; 'Kilometre'; 'Metre'; 'Yard'; 'Foot' 	
	 State that when dealing with heights and altitudes we use metres or feet subject to the choice of individual states 	
	 State that horizontal distances are calculated in metres, kilometres or nautical miles 	Using a simple calculator or mechanical navigation
	 Calculate examples of linear measure conversions 	computer
061 02 00 00	MAGNETISM AND COMPASSES	
061 02 01 00	General Principles	
	 Terrestrial Magnetism 	
	 Describe in simple terms why a magnetized compass needle can be used to indicate Magnetic direction on the Earth 	
	 State the properties of a simple magnet 	
	 Illustrate the approximate location of the North and South Magnetic Poles 	
	 Describe the direction and shape of the lines of Total Magnetic Force 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 State the conventions for assigning colour to the North and South Magnetic Poles 	
	 Resolution of the Earth's Total Magnetic Force (intensity) into Vertical and Horizontal components 	
	 Define the term 'Magnetic Meridian' 	
	 Define the terms 'Magnetic Equator' and 'Magnetic Latitude' 	
	 State the relationship between the Vertical (Z) and Horizontal (H) components of the Earth's field and the Total force (T). 	
	 Calculate T, Z, or H given appropriate data 	
	 The effects of change of Magnetic Latitude on these components 	
	 Explain how H and Z are affected by a change of Magnetic Latitude 	
	- Given H and Z values for one magnetic latitude, calculate their values at another magnetic latitude	
	Directive Force	
	 Define the term 'Directive Force' 	
	 State how Directive Force varies with Magnetic Latitude 	
	 Explain the "6 micro teslas zone" near Magnetic North Pole 	
	 Magnetic Dip and Variation 	
	 Define Dip (or inclination). 	
	 State the value of Dip at the Magnetic Poles and the Magnetic Equator (Aclinic Line). 	
	 Define the term 'isoclinal' 	
	 Describe how dip is related to 'H' and 'Z' components of 'T' 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	- Define Variation	
	 Define the term 'isogonal' 	
	 Define the term 'Agonic Line' 	
	 Explain why Variation changes with location on the Earth and with time 	
	 Calculate Variation, True Direction or Mag Direction given appropriate data 	
061 02 02 00	Aircraft Magnetism	
	 Hard iron and vertical soft iron 	
	 Define Hard and Soft Iron Magnetism 	
	 State typical causes of Hard Iron magnetism 	
	 State typical causes of Soft Iron magnetism 	
	 The resulting magnetic fields 	
	 Identify the Hard Iron and Vertical Soft Iron components of aircraft magnetism which produce compass deviation 	
	 Identify which Hard Iron and Vertical Soft Iron components produce Coefficients B and C 	
	 Calculate Coefficients A, B and C given the appropriate data 	
	 The variation in directive force 	
	 Explain how Coefficients B and C affect the Directive Force and produce compass deviation 	
	 Describe the methods of measuring compass deviation 	
	 Explain the cause of apparent Coefficient A 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Change of deviation with change of latitude and with change in the aircraft's heading 	
	 Calculate the total deviation caused by Coefficients A, B and C on a given aircraft heading 	
	 Calculate the heading on which maximum deviation will occur 	
	 Describe the effects of change of magnetic latitude on Coefficients A, B and C 	
	 Calculate Magnetic heading, Compass heading or Deviation given appropriate data 	
	 Using a typical Compass Deviation Card, identify the Compass heading to fly a specified Magnetic heading 	
	 Turning and Accelerations errors 	
	 Describe the effect of a linear acceleration or deceleration on a given indicated heading of a Direct Reading Compass (DRC) at a given North or South Magnetic Latitude 	
	 State the comparative effect of a given linear acceleration/deceleration on a given indicated heading of a DRC at different Magnetic Latitudes in the same Hemisphere 	
	 Describe the effect of a radial acceleration on the indicated heading of a DRC during a specified amount of turn at a given Magnetic Latitude 	
	 State the comparative effect of a given radial acceleration on the indicated heading of a DRC at different Magnetic Latitudes in the same Hemisphere 	
	 Keeping magnetic materials clear of the compass 	
	 Explain the meaning of compass safe distance 	
	 List the items likely to affect the deviation of a DRC 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
061 02 03 00	Knowledge of the principles, standy and landing compasses and remote reading compasses	
	 Direct Reading Compasses (drc) 	
	 Explain the construction of the Direct Reading Compass (DRC) using the basic three principles of Horizontal, Sensitivity and Aperiodicity 	
	 State the Pre-Flight and in-flight serviceability checks on the DRC 	
	 Interpret the indications on a DRC 	
	 Identify the conditions in which the indications on a DRC may be unreliable or in error 	
	 Explain why the indications may be unreliable or inaccurate in these conditions 	
	 Explain the steps which can be taken to minimise the effects of acceleration and turn errors 	
	 Explain how the magnitude of the acceleration errors are affected by: 	
	 Magnetic Latitude 	
	 Aircraft Heading 	
	 Magnetic Moment 	
	 Rate of turn 	
	 Remote Reading Compass 	
	 Describe the construction of the Remote Reading Compass (RRC) with particular emphasis on the principle of operation of the :- 	
	 Flux valve or Detector Unit 	
	 Synchronizing Unit (Selsyn). 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Annunciation indicator 	
	 Precession circuit and precession coil 	
	– Gyro unit	
	 Heading indicator 	
	 Feed back to the Null-seeking rotor 	
	 Erection system for the gyro 	
	 Name the errors of the RRC and describe how the errors are minimized 	
	 Compare RRC with the DRC in terms of advantages and disadvantages 	
	 Calibration (Compass Swinging) 	
	 List the occasions when a full calibration swing or a check swing is required 	JAR's
	 Describe the basic method for obtaining deviations on the cardinal points using the Landing Compass or other datum compass 	
	 Explain the calculations of Coefficients A, B and C 	
	 Explain the method for compensation of Coefficients A, B and C on a DRC 	
	 State the maximum limits for residual deviation in the DRC and RRC 	JARs? Reference?
061 03 00 00	CHARTS	
061 03 01 00	General properties of miscellaneous types of projections	
	 Define the term conformality 	
	 State that the ICAO-rules define the chart as a conformal projection on which a straight line approximates 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	a great circle	
	 State that different chart projections are used, depending on the application and area of use involved. 	
	 State that all charts, even if they have been developed mathematically, are designated as projections 	
	 State that the following kind of projection surfaces are used: 	
	– Plane	
	– Cylindrical	
	– Conical	
	 State that, depending on the position of the rotational axis of the cone or cylinder in relation to the earth's axis, we obtain the following projections: 	
	 Normal projection 	
	 Transverse projection 	
	 Oblique projection 	
	 Describe the type of projection surface in each of the following : 	
	– Mercator	
	 Lambert conformal 	
	 Polar stereographic 	
	 Name the origin of each of the projections (Mercator-direct/transverse/oblique; Lambert; Stereographic) 	
	 Define the scale of a chart 	
	 Use the scale of a chart to calculate particular distances 	Use a calculator

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Describe how scale varies on an aeronautical chart 	
	 Define the following terms: 	
	Standard Parallel	
	 Constant of the cone/Convergence factor 	
	 Parallel of origin 	
	 Define and determine chart convergence 	
061 03 02 00	The representation of meridians, parallel, great circles and rhumb lines	
	 On all charts in the syllabus 	
	 Describe the appearance of parallels of latitude and meridians 	
	 Describe the appearance of great circles and rhumb lines 	
	 Calculate, in the polar-stereographic chart, the radius of a parallel of latitude given the chart scale 	
	 Calculate the angle, on the chart, between a great circle and a straight line between two given positions (Mercator, Lambert's and polar stereographic.) 	Use a calculator
	 Resolve simple geometrical relationships on any chart in the syllabus 	
061 03 03 00	The use of current aeronautical charts	
	 Enter positions on a chart using geographical coordinates or range and bearing 	Use protractor,
	 Derive coordinates of position 	compasses/dividers
	 Derive true track angles and distances 	Ruler
	 Resolve bearings of a NDB for plotting on an aeronautical chart 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Resolve radials of a VOR for plotting on an aeronautical chart 	
	 Plot DME ranges on an aeronautical chart 	
	 Find all the information for the flight and flight planning on the following Charts: 	
	 ICAO topographical map 	
	- VFR Chart	
	 Crossing Chart 	
	 Radio facility Chart 	
	- Terminal Area Chart	
	 Standard Instrument Arrival Chart (STAR) 	
	 Standard Instrument Departure Chart (SID) 	
	 Instrument Approach and Landing Chart 	
	 Aerodrome Chart 	
	 Aerodrome Obstruction Chart 	
	 Describe the methods used to provide information on chart scale. Use the chart scales stated and be aware of the limitations of a stated scale for each projection 	
	- Describe methods of representing relief and demonstrate the ability to interpret the relevant relief data	
	 Interpret the most commonly used conventional signs and symbols 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
061 04 00 00	DEAD RECKONING NAVIGATION (DR)	
061 04 01 00	Basics of dead reckoning	
	 Explain the difference between speed and velocity 	
	 Explain the concept of vectors including adding together or splitting in two directions 	
	 Introduce Triangle of Velocities, e.g. TAS/Hdg, W/V, Trk (Crs)/GS and Drift 	
	 Derivation of TAS from IAS/RAS and Mach number 	
	 Revise directional datums for Hdg, Trk (Crs) and W/V, e.g. True, Magnetic and Grid 	
	 Determination of ETA from distance and GS 	
	 Define DR position versus the Fix 	
	 Demonstrate use of DR track plot to construct DR position 	
061 04 02 00	Use of the navigational computer	
	 Calculation of speed/time/distance 	
	 Calculation of fuel consumption 	
	 Conversion of distances 	
	 Conversions of volumes and weights including use of specific (relative) gravity 	
	 Calculation of air speed including IAS, EAS, CAS/RAS, TAS and Mach number (both on navigation computer and Mental DR) 	
	 Application of drift to give Heading or Track (Course). 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
061 04 03 00	The Triangle of velocities, methods of solution for the determination of:	
	- Heading	
	 Ground Speed 	
	 Wind Velocity including multi-drift method 	
	 Track (Course) 	W/V also mentioned in
	 Drift angle 	previous section
	 Head/Tail/Cross wind component 	
061 04 04 00	List elements required for establishing DR position	
	 Describe the role and purpose of DR navigation 	
	 Illustrate mental DR techniques used to: 	
	 Calculate head /tailwind component 	Given appropriate input
	 Calculate Wind Correction Angle (WCA) 	Given appropriate input
	 Revise ETA's 	
	 Describe course of action when lost: 	
	 Calculate average heading and TAS 	
	 Calculate average wind velocity vector 	
	 Calculate estimated ground position 	
	 Illustrate DR position graphically and by means of DR computer: 	Given appropriate input
	 Find true heading and ground speed 	Given TT, TAS and W/V

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Find true track and ground speed 	Given TH, TAS and W/V
	 Find wind velocity vector 	
	 Compare the validity of wind triangle vectors 	
	 Apply track (course), heading and wind symbols correctly. 	
	 Discuss the factors that affect the accuracy of a DR position 	
061 04 05 00	Calculate DR elements	
	 Calculate attitude 	
	 Calculate True Altitude given indicated altitude, elevation, temperature and pressure inputs 	Using a DR computer
	 Calculate indicated altitude given true altitude, elevation, temperature and pressure inputs 	
	 Calculate density altitude 	Using a DR computer
	 Define and explain QFE, QNH and Pressure Altitude 	
	 Calculate height on a given glide path 	Given relevant data
	 Calculate distance to touchdown 	
	 Explain temperature 	
	 Explain the expression ram-air/Total Air Temperature (TAT). 	
	 Explain the term 'ram-rise' 	
	 Explain the term 'recovery coefficient' 	
	 Compare the use of OAT and TAT in airspeed calculations 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Calculate airspeed 	
	 Explain the relationship between IAS-CAS-EAS and TAS 	
	 Calculate CAS for a given value of TAS or Mach No 	Using a computer
	 Calculate TAS by means of DR computer and given IAS or CAS, with various temperature and pressure inputs 	Given appropriate input
	 Calculate TAS and GS for use in DR navigation 	Given appropriate input
	 Calculate Mach Numbers 	Given appropriate input
061 04 06 00	Construct DR position on Mercator, Lambert and Polar Stereographic Projection Charts	
	 Solve practical DR navigation problems on any of the above charts 	Given appropriate input and relevant chart
061 04 07 00	Name range specifics of maximum range and radius of action	
	 State that the maximum range is the distance that can be flown with the usable fuel, a given speed and meteorological condition 	
	 Calculate maximum range of the aircraft 	Given fuel, characteristic speed table and
	 Define radius of action 	Meteorology
	 Calculate radius of action, returning to point of departure with all reserves intact, under prevailing wind conditions 	Given appropriate input
	 Define point-of-safe-return, name importance and use 	
	 Calculate point-of-safe-return, returning to point of departure, with specified reserves intact under prevailing wind conditions 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Define point-of-equal-time 	
	 Calculate point-of-equal-time between the point of departure and the destination 	
061 04 08 00	Miscellaneous DR uncertainties and practical means of correction	
	 Describe the concept of 'Circle of Error' 	
	 List the factors that will affect the dimensions of that circle 	
	 Discuss practical methods of compensating these factors 	
061 05 00 00	IN-FLIGHT NAVIGATION	
061 05 01 00	Use of visual observations and application to in-flight navigation	
	 Describe what is meant by the term 'map reading' 	
	 Define the term 'visual check points' 	
	 Discuss the general features of a visual checkpoint and give examples 	
	 State that the flight performance and navigation can be refined by evaluating the differences between DR positions and actual positions 	
	 Establish fixes on navigational charts by plotting visually derived intersecting lines of position 	
	 Describe the use of a single observed position line to check flight progress 	
	 Describe how to prepare and align a map /chart for use in visual navigation 	
	 Describe visual navigation techniques including: 	
	 Use of DR position to locate identifiable landmarks 	
	 Identification of charted features/ landmarks 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Factors affecting the selection of landmarks 	
	 An understanding of seasonal and meteorological effects on the appearance and visibility of landmarks 	
	 Selection of suitable landmarks 	
	 Estimation of distance from landmarks from successive bearings 	
	 Estimation of the distance from a landmark using an approximation of the sighting angle and the flight altitude 	
	 Describe the action to be taken., if there is no check point available at a scheduled turning point 	
	 State the function of contour lines on a topographical chart 	
	- Indicate the role of 'layer tinting' (colour Gradient) in relation to the depiction of topography on a chart	
	 Determine, within the lines of the contour intervals, the elevation of points and the angle of slope from the chart 	
	 Using the contours shown on a chart, describe the appearance of a significant feature 	
	 Understand the difficulties and limitations that may be encountered in map reading in some geographical areas due to nature of terrain, lack of distinctive landmarks or lack of detailed and accurate charted data 	
	 Understand that map reading in high latitudes can be considerably more difficult than map reading in lower latitudes since the nature of the terrain is drastically different, charts are less detailed and less precise, and seasonal changes may alter the terrain appearance or hide it completely from view 	
	 Understand that in areas of snow and ice from horizon to horizon and where the sky is covered with a uniform layer of clouds so that no shadows are cast, the horizon disappears, causing earth and sky to blend 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Understand that since there is a complete lack of contrast in a "white-out", distance and height above ground distance and height above ground are virtually impossible to estimate 	
061 05 02 00	Navigation in climb and descent	
	 Evaluate the mean TAS for climb or descent. 	
	 Evaluate the mean W/V for the climb or descent 	
	 Formulate the general term to calculate the distance covered during climb or descent 	
	 Calculate the average ground speed based on average true airspeed, average wind and average course as experienced during the climb or descent 	Use a graphical computer or rule of thumb method
	 Find the climb and descent time using an appropriate formula 	
	 Find climb/descent gradients by means of an appropriate formula 	
	 Evaluate rate of climb/ descent (required to achieve a stated gradient) using an appropriate formula 	
	 State the rule of thumb formula for finding the rate of climb or rate of descent for a standard 3° slope 	
	 Discuss the need to accurately determine the position of the aircraft before commencing descent 	
061 05 03 00	Navigation in Cruising Flight, Use of Fixes to Revise Navigation Data	
	 Establish a position line (PL) from radio aids including NDB, VOR and DME 	
	 Plot a PL taking into consideration factors such as convergence and different North references 	
	 Establish fixes on navigational charts by plotting two or more intersecting positions lines (PL) 	
	 Adjust PL's for the motion of aircraft between the observations, considering known accuracy of ground speed and course (along and across track PL's). 	
	 Establish the aircraft's position by a series of bearings on the same beacon (running fix) 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Discuss the most probable fix established on multiple PL's allowing for the geometry of intersection angles 	
	- Calculate the track angle error (TKE), given course from A to B and an off-course fix, utilizing the 1 in 60	
	 Calculate the average drift angle based upon an off-course fix observation 	
	 Calculate the average ground speed based on two observed fixes 	Use graphical computer, e.g.
	 Calculate average wind speed and direction based on two observed fixes 	Aviat/CRP5
	 Plot the wind vector by means of two or more track lines experienced on different headings 	Graphical solution on the
	 Calculate the heading change at an off-course fix to directly reach the next check point/destination using the 1 in 60 Rule 	Aviat/CRP5
	 Calculate ETA revisions based upon observed fixes and revised ground speed 	
061 05 04 00	Flight Log	
	 Enter revised navigational en-route data, for the legs concerned, into the flight log. (e.g. updated wind and ground speed and correspondingly losses or gains in time and fuel consumption). 	
	 Enter, in the progress of flight, at each check point or turning point, the "actual time over" and the "estimated time over" for the next check point into the flight log. 	Given a sample navigation mission
061 05 05 00	Purposes of (FMS) Flight Management Systems	
	 Indicate the primary functions of an FMS 	
	 Name the two major units of an FMS 	
	 Explain the role of the Flight Management Computer (FMC) 	
	 List the components of a standard data package as held in a typical FMC 	
	 Describe the contents of the navigation database 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Indicate how the validity or currency of the navigation data is maintained 	
	 Describe the contents of a typical performance database in an FMC 	
	 List the order of priority applied by the FMC to the selection of radio navigation aids for position fixing 	
	 Explain the role of the Control Display Unit (CDU) 	
	 With the aid of a suitable diagram, locate and explain the role of 	
	 The information blocks on the CRT component of the CDU 	
	 The various keys and key sections the annunciators 	
	 Describe the alert and advisory signals listing typical examples of each category and describing how such signals are displayed 	
	 Describe the use of the scratch pad/ message block 	
	 Describe the role of the FMS in: 	
	 Route management 	
	 Performance management 	
	 Describe the sequence of page display normally appearing during initial power application to the EFIS 	
061 06 00 00	INERTIAL NAVIGATION SYSTEMS (INS)	
061 06 01 00	Principles and Practical application	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the principle of operation of Inertial Navigation Systems 	
	 Operation of Accelerometers 	
	 Calculation of velocity and distance using integrators 	
	 Basic layout of accelerometers 	
	 Errors if accelerometers are not level or oriented to True North 	
	 Function of the stable platform 	
	 Use of the Rate Integrating Gyros to maintain platform orientation 	
	 Schuler period and tuning 	
	 Basic components of an INS including the navigation computer and related external inputs 	
	 Explain the operation of the IRS (Strap down) compared to INS: 	
	 Explain the principle of operation of the Ring Laser Gyro 	
061 06 02 00	Alignment Procedures	
	 Discuss the alignment procedure for the INS (Stable Platform) 	
	 Explain the requirements for data input in order to achieve successful alignment of the INS/IRS 	
	 Indicate the precautions to be observed (during alignment) in respect of data input and movement of aircraft 	
	 Describe the likely effects of failing to observe these precautions 	
	 Indicate the probable duration of the alignment procedure 	
	 Discuss the differences in alignment procedures for the IRS (Strap-down). 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Indicate the likely causes and effects of loss of alignment during flight 	
061 06 03 00	Accuracy, reliability, errors and coverage of INS/IRS	
	 Describe the factors affecting accuracy 	
	– Reliability	
	 Describe the nature of errors in the INS/IRS position and calculate error rates (given suitable data) 	
	– Coverage	
061 06 04 00	Flight deck equipment and operation	
	 Describe the Mode Selection Unit (MSU) and warning lights and indicate their roles 	
	 Describe the Control Display Unit (CDU) including warnings and displays of each function 	
	 Track (TK) 	
	 Desired Track (DSRTK) 	
	 Cross Track Error (XTK) 	
	 Track Error (TKE) 	
	 Drift Angle (DA). 	
061 06 05 00	INS operation	
	 Explain the basic skills needed to operate the INS as follows: 	
	 Use of the MSU 	
	 Use of the CDU to:- 	
	 Insert way points 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Check accuracy of inputs 	
	 Insert changes to intended flight plan 	
	 Insert direct routings 	
	 Extract information 	
	 Monitor system status 	
	 Analyse accuracy of outputs against external references and evaluation of other information 	