JAR-FCL	LEARNING OBJECTIVES	REMARKS
032 01 00 00	<u>PERFORMANCE OF SINGLE-ENGINE AEROPLANES NOT CERTIFIELD UNDER JAR/FAR 25 (LIGHT AEROPLANES) – PERFORMANCE CLASS B</u>	
032 01 01 00	Definitions of terms and speeds used	
	 Define the following terms 	
	 Density altitude 	
	 Climb gradient 	
	 Unaccelerated flight 	
	 Definition of speeds in general use 	
	 Clear 50 ft speed (Take-off Safety Speed) 	
	 Touch down speed (Reference Landing Speed) 	
032 01 02 00	Take-off and Landing Performance	
032 01 02 01	Effect of aeroplane mass, wind, density, altitude, runway slope, runway conditions	
032 01 02 02	Use of Aeroplane flight data	
	 Determine the following distances: 	
	 Take-off distance to 50 ft, landing distance from 50 ft, ground roll distance during landing 	Appropriate chart and data
	 Climb height at given distance (of obstacle) from end of Take off Distance 	are given
	 Determine wind component for landing performance 	
	 Determine the take-off speeds 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Determine the maximum allowed take-off weight 	
032 01 03 00	Climb, cruise and descent performance	
	 Explain the effect of temperature, wind, altitude on climb performance 	
	 State rate of climb, angle of climb and minimum rate of descent and descent angle 	
	 Resolve the forces during a steady climb-, and glide 	
	 State the opposing forces during a horizontal steady flight 	
	 Explain the effect of mass and wind on the descent performance 	
032 01 03 01	Use of Aeroplane flight data	Appropriate chart and data
	 Determine the cruise true airspeed (TAS) 	Are given
	 Determine the manifold air pressure (MAP) 	
	 Determine distance covered, time and fuel consumption during climb 	
	 Determine the range for certain conditions 	
032 01 03 02	Effect of density altitude and aeroplane mass	
	 Explain the effect of altitude and temperature on cruise performance 	
	 Explain the effect of mass on power required, drag and airspeed 	
	 Explain the effect of altitude and temperature on the power required curve 	
032 01 03 03	Endurance and the effects of the different recommended power settings	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Explain the effect of wind on the maximum endurance speed 	
032 01 03 04	Still air range with various power settings	
	 Explain the effect of various power settings on the still air range 	
032 02 00 00	PERFORMANCE OF MULTI-ENGINE AEROPLANES NOT CERTIFIED UNDER JAR/FAR 25 (LIGHT TWIN) – PERFORMANCE CLASS B	
032 02 01 00	Definitions of terms and speeds	
	 Define the following terms: 	
	 Balanced/unbalanced field length 	
	 Critical engine 	
	 Speed stability, 2nd-regime or backside of power curve and normal regime 	
	 Definition of speeds 	
	 Define the following speeds: 	
	 Vx speed for best angle of climb 	
	 Vy speed for best rate of climb 	
032 02 01 01	Any new terms used for multi-engine aeroplane performance (032 01 01 00)	
	 Explain the effect of the critical engine inoperative on the power required and the total drag 	
	 Select from a list the correct order of take-off speeds 	
	- Explain the parameter(s), which must be maintained at V _{MCA} , in case of engine failure	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Explain the effect of a clearway in take-off calculation 	
	 Explain the effect of engine failure on controllability under given conditions 	
	 State the effect for propeller- and light twin jet aeroplanes 	
	 Name the limit(s) for V_{max tire} 	
	- Define V _{2min}	
032 02 02 00	Importance of performance calculations	
032 02 02 01	Determination of performance under normal conditions	
	 Explain the effect of centre of gravity on fuel consumption 	
	 Explain the effect of flap setting on the ground roll distance 	
	 For both fixed and constant speed propellers, explain the effect of airspeed on thrust during the take-off run 	
032 02 02 02	Consideration of effects of pressure altitude, temperature, wind, aeroplane mass, runway slope and runway conditions	
	 Explain the effect of temperature on the brake energy limited take-off mass 	
	 Explain the effect of pressure altitude on the field length limited take-off mass 	
	 Explain the effect of runway contamination on the take-off distance 	
	 Explain the effect of mass on the speed for best angle, and best rate on the descent 	
032 02 03 00	Elements of performance	

JAR-FCL RFF NO	LEARNING OBJECTIVES	REMARKS
	– Discuss the aeroplane's C_L / C_D curve for specified configurations	
	 Explain the certified engine thrust ratings 	
	 Explain the effect of temperature and altitude on the fuel flow for jet engine aeroplanes in given conditions 	
	 Explain the effect of bank angle at constant TAS on the load factor 	
	 Explain the effect of wind on the maximum range speed and speed for maximum climb angle 	
	 Explain the effect of mass on descent performance 	
	 Explain the effect of airspeed on the thrust of a jet engine aeroplane at constant RPM 	
	 Explain the effect of speed and angle of attack on the induced drag 	
	 Interpret the 'thrust required' and' thrust available' curves 	
	 Interpret the 'power required' and 'power available' curves 	
	 State and explain specific range (SR) and aeroplane's specific fuel consumption (SFC) 	
032 02 03 01	Take-off and landing distances	
	 Explain the effect of thrust reverser on take-off mass calculation 	
	 State the percentage of accountability for head, and tailwind during take-off calculations 	
	 Determine landing distance required (dry and wet) for destination and alternate airports valid for jet- and propeller aeroplanes 	
032 02 03 02	Rate of climb and descent	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Explain the effect of selected power settings, speeds, mass and flaps on the rate of climb versus airspeed curve 	
	 Explain the effect of mass, altitude and flaps on the idle descent 	
032 02 03 03	Cruise altitude and altitude ceiling	
	 Define service, and absolute ceiling and optimum altitude 	
	 Explain effect of altitude, mass, configuration on total drag under given conditions 	
	 Interpret the Buffet onset Boundary Chart (BOB-chart) 	
	 Describe manoeuvring capability, low, and high speed limits 	
	 Indicate effects of mass and bank angle in the BOB-chart 	
	 Identify buffet onset gust factor 	
032 02 03 04	Payload/range trade-offs	
	 Interpret the payload-range diagram 	
	 Describe cruise technique, and meteorological conditions 	
032 02 03 05	Speed/Economy trade-off	
	 Explain the correlation between maximum endurance and fuel consumption 	
032 02 04 00	Use of performance graphs and tabulated data	
	 Explain the effect of brake release before take off power is set on the accelerate, and stop distance 	Appropriate chart is given
032 03 00 00	PERFORMANCE OF AEROPLANCES CERTIFIED UNDER FAR/JAR 25 – PERFORMANCE CLASS A	JAR 25 105

JAR-FCL	LEARNING OBJECTIVES	REMARKS
032 03 01 00	<u>Take – off</u>	
	 Explain the essential forces affecting the aeroplane during take-off until lift off 	
	 State the effects of angle of attack, thrust-to-weight ratio and flapsetting on acceleration distance 	
032 03 01 01	Definitions of terms and speed used	
	 Define the following speeds: 	IEM FCL 1.475(b)
	– V _{MC :} minimum control speed	JAR 25.149 (a thru d)
	 V_{MCG} ground minimum control speed 	JAR 25.149 (e)
	– V _{MCA} : air minimum control speed	JAR 25.149
	 V_{EF} : engine failure speed 	JAR 25.107 (a) (1)
	 V1 : critical engine failure speed (decision) 	JAR 25.107 (a) (2)
	– V _R : rotating speed	JAR 25.107 (e)
	$-V_2$: take-off safety speed for piston engine aircraft, or take-off climb speed or speed at	JAR 25.107 (b) (c)
	35 ft for jet Aircraft	JAR 25.107 (c)
	– V _{MU} : minimum unstick speed	JAR 25.107 (d) and (e)
	– V _{LOF} : lift off speed	JAR 25.107 (f)
	– V _{MBE} : max brake energy speed	
	 V_{Max Tyre} : max tyre speed 	
	$-$ V _S \pm stalling speed or minimum steady flight speed at which a/c is controllable	Distinguish V _{S0} & V _{S1}

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Definitions of terms and distance used 	
	 Define the following distances: 	JAR 25.113
	 TORA & TORR : 'Take off run available' & 'Take off run required' with all engines operating and one engine inoperative 	
	 TODA & TODR: 'Take off distance available' & 'Take off distance required' with all engines operating and one engine inoperative 	JAR 25.113
	 ASDA & ASDR: 'Accelerate stop distance available' & 'Accelerate stop distance required' 	JAR 25.109
	 Clearway and stopway 	
	 Define balanced field length 	
032 03 01 02	Runway variables	
	 Explain the effects of the following runway variables on take off performance 	
	 dimensions, slope, surface condition (damp, wet or contaminated), PCN, field elevation, influence of contamination on friction coefficient 	
032 03 01 03	Aeroplane variables	
	 Explain the effects of the following aeroplane variables on take off performance 	
	 mass, configuration, variable power settings, reduced thrust, serviceability of high lift devices, application of reverse thrust, brakes and use of anti-skid devices 	
032 03 01 04	Meteorological variables	
	 Explain the effects of the following meteorological variables on take off performance 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 wind components (along and across runway), precipitation, temperature and pressure altitude - wing icing - windshear 	
032 03 01 05	Take off speeds	
	 Explain the significance and applicability of the take off and initial climb 'V' speeds for specified conditions and configuration for all engines operating and one engine inoperative 	
	$-$ State V_1 , V_R , V_2 , $V_{2\text{+}\text{increment}}$, landing gear and flap/slat retraction speeds	
	$-$ State upper and lower limits of the take off speeds V_1 , V_R and V_2	
	 State the reaction time between engine failure and recognition 	
	 Elaborate on factors which affect V₂ 	
	 State mass, temperature, elevation and flap setting 	
	– Explain the effect of pressure altitude on V_{MCA}	
	 Explain the effect of increasing altitude on the stall speed (IAS) 	
032 03 01 06	Take off distance	
	 Explain the significance and applicability of the take off distances for specified conditions and configuration for all engines operating and one engine inoperative 	
	 the influence of aeroplane-, runway- and meteorological variables 	
	 the effect of early/late rotation of the aeroplane 	
	 Explain the effect of using clearway on the take-off distance required 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	- Explain the effect of miscalculation of V ₁ on the take-off distance required	
	– Explain the effect of using a higher or lower V_1 than the balanced V_1 on the take-off distance	
	 Explain effect of higher flap setting on the average drag during the acceleration distance 	
032 03 02 00	Accelerate-stop distance	
	 Explain the significance and applicability of the accelerate-stop distance for specified conditions and configuration for all engines operating and one engine inoperative 	
	 Explain the influence of aeroplane, runway and meteorological variables 	
	 Explain the effect of using a stopway on the accelerate-stop distance required 	
	- Explain the effect of miscalculation of V ₁ on the accelerate-stop distance required	
	 Explain the effect of using a higher or lower V₁ than the balanced V₁ on the accelerate-stop distance and action(s) to be taken in case of engine failure below V₁ 	
032 03 02 01	Concept of balanced field length	
	 Explain the significance and applicability of a balanced/unbalanced field length 	
	- Explain the effect of a stopway on the allowed take off mass and appropriate V ₁	
	- Explain the effect of a clearway on the allowed take off mass and appropriate V ₁	
	– State relation of take off distance, accelerate stop distance and V_1	
	 Elaborate on the runway length limited take-off mass (RLTOM) 	
032 03 02 02	Use of flight manual charts	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
KEF NO	 Using the aeroplane performance data sheets, compute the accelerate stop distances, decision time and deceleration procedure assumptions 	
	 Explain time-to-decide allowance, use of brakes, use of reverse thrust, brake energy absorption limits, delayed temperature rise and tyre limitations - fuse plug limit 	Appropriate perform chart
	 Explain the typical form of the wind guide lines in the performance charts 	
	 Explain the effect of anti-skid u/s during take-off 	
032 03 03 00	 Explain the effects of runway, aeroplane and meteorological variables on the tyre speed limited take off Initial climb 	
	 Define gross,- and net take-off flight path with one engine inoperative 	
	 State the effects of runway-, aeroplane,- and meteorological variables on determination of climb limited take-off mass (CLTOM) and obstacle limited take-off mass (OLTOM) 	JAR 25.111-115-117-121- 123
	 Explain the use of 35 ft vertical distance over obstacles and equivalent reduction in acceleration at the point at which the aeroplane is accelerated in level flight 	
032 03 03 01	Climb segments	
	 Define the segments along the gross take-off flight path 	
	 State distinct changes in the configuration, power or thrust, and speed 	
	 State distinct differences in climb gradient requirements for various types of aeroplanes during 	
	– State maximum bank angle when flying at V_2	Given appropriate

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
_	 Determine the climb limited take-off mass (CLTOM) given relevant data 	performance chart
032 03 03 02	All engines operating	
	 Calculate by means of a rule of thumb the rate of climb of the aeroplane 	
	- Calculate the climb gradient for a given Lift/Drag ratio, thrust, mass and gravitational acceleration (G)	
	 Describe the noise abatement procedures A and B during take-off according to PANS-OPS 	
032 03 03 03	Engine inoperative operation	
	 Explain the effects of aeroplane and meteorological variables on the initial climb 	
	 Consider influence of airspeed selection, acceleration and turns on the climb gradients, best rate of climb speed and best angle of climb speed 	
	 Computation of maximum take-off mass at a given minimum gross gradient (2nd segment) sin of angle of climb, thrust per engine, G and drag 	
032 03 03 04	Obstacle clearance requirements	
I		1

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the effect of climbing with constant IAS on the drag 	
	 Explain the effect of mass on the Rate of Climb (ROC) speed 	
	 Computation of the maximum climb speed by using performance data 	
	 Explain the effect of meteorological variables on the ground distance during climb 	
032 03 04 01	Use of flight manual performance charts	
	 Distinguish the difference between the flat rated and non flat rated part in performance charts 	
	 Elaborate on the cross over altitude, during a certain climb speed schedule (IAS-Mach Number) 	
032 03 04 02	Significant airspeeds for climb	
	 Give, from a list, the correct sequence of speeds for jet transport aeroplanes 	
	– State the effect of mass on V_X and V_Y	
	 State the effect on TAS when climbing in and above the troposphere at constant Mach Number 	
	 State the effect of meteorological variables on the climb speeds 	
	 State the effect on the operational speed limit when climbing at constant IAS 	
	– State the effect of flaps on V_X and V_Y	
	– State the effect of acceleration on V_X and V_Y at a given constant power setting	
032 03 05 00	Cruise	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Explain the relationship between mass and minimum drag during a steady horizontal flight 	
	 Explain and state the factors which affect the optimum long range cruise altitude 	
	 Explain the relationship between airspeed and induced drag 	
032 03 05 01	Use of cruise charts	
	 Explain in detail the Buffet Onset Boundary Chart (BOB-chart) 	
	 State influence of bank angle, mass and 1.3 g buffet onset factor on the step climb 	
	 Explain the purpose of step climbs used on long distance flights 	
	 Explain and state factors which affect the choice of optimum altitude 	
	 Explain the factors which might affect or limit the maximum operating altitude 	
032 03 05 02	Cruise control	
	- Explain differences in flying V _{long range} and V _{max range} with regard to fuel flow and speed stability	
	 Discuss 'thrust/power available and required' curves in horizontal flight 	
	 Explain reasons for flying above or below optimum altitude 	
	 Computation of fuel consumption in relation to different aeroplane masses 	Relevant data are given
	 Explain the difference between Specific Fuel Consumption (SFC) and Specific Range (SR) 	
	 Computation of fuel mileage 	Relevant data are given
	 Explain the factors which affect the thrust/power available and thrust/power required curves in horizontal flight 	

JAR-FCL RFF NO	LEARNING OBJECTIVES	REMARKS
032 03 05 03	En-route One Engine Inoperative	JAR 25.123
	 Explain in detail the drift-down procedure 	JAR OPS 1.580
	 Identify factors which affect the en-route net flight path 	
	 State minimum obstacle clearance height prescribed in JAR OPS 1.580 	
	 Explain influence of deceleration on the drift-down profiles 	
	 Explain the effect of one engine inoperative at high altitudes on the SFC and SR and drift-down speed 	
032 03 05 04	Obstacle clearance en-route	
	 Explain items mentioned in 032 03 05 04 	JAR 25.123
032 03 05 05	En-route – Airplanes with three or more Engines, two engines inoperative	
	 Analyse critical situation 	
	 State factors which affect the requirements and limitations: 	
	 Limited systems operations 	
	 Raised landing weather minima 	
	 Cross wind limits 	
	 Reduced range 	
	 Highly reduced aeroplane performance 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
032 03 06 00	Descent and landing	JAR 25.119, 121 and 125
	 Explain the effect of changing lift coefficient during glide at constant Mach Number 	
	 Describe effect of pitch changes on the glide distance 	
	 Explain the influence of mass, configuration, altitude on rate of descent, glide angle and lift/drag ratio 	
	 Resolve the forces during a steady idle-descent (glide) flight 	
	 Explain the effect of a descent at constant Mach Number on the margin to low speed,- and Mach buffet 	
	– State the requirements for establishing V_{REF} and V_T	V _{target} IS NOT IN JAR'S
	 State the requirements for the approach,- and landing climb limits 	
	 State the requirements for the maximum landing distance (dry and wet) applicable for turbo propeller and turbojet aeroplanes at both destination and alternate 	
	 Explain the relationship between mass, pitch angle, airspeed and lift/drag ratio during a glide 	
032 03 06 01	Use of descent charts	
	 Explain the effects on Mach Number and airspeed (IAS) during a descent schedule 	
	 Explain the effect of mass on the vertical speed and forward speed at given conditions 	
	– Identify the difference between V_{MO} - V_{NE} - M_{MO}	
032 03 06 02	Maximum permitted landing mass	
	 Explain factors as mentioned in the subject Mass & Balance 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Demonstrate knowledge of brake energy limited landing weight - overweight landing - flap placard speed - limiting bank angle - landing distance required 	
032 03 06 03	Approach and landing data calculations	Given:
	 Explain the effect of hydroplaning on landing distance required 	a. JAR OPS
	 State three types of hydroplaning 	b. JAR 25
	 Suitability of selected landing runway landing distance available 	c. Appropriate aeroplane
	 Computation of maximum landing mass for the given runway conditions 	Performance data sheets
	 State the requirements for determination of maximum landing mass 	
	_	
	 Determine, using aeroplane performance data sheets, the maximum landing mass for specified runway and environmental conditions 	
	 Computation of the minimum runway length for the given aeroplane mass condition 	
	 State the requirements for determination of minimum runway length for landing 	
	 Determine, using aeroplane performance data sheets, the minimum runway length for a specified landing mass, runway and environmental conditions 	
		1

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the effect of temperature and pressure altitude and how they modify the maximum landing mass for given runway distance and landing distance required for given landing mass 	
	 Explain the effect of temperature and pressure altitude on approach and landing climb performance 	
	 Explain the limitations that may be imposed when ACN > PCN 	
	 Computation of expected landing mass 	
	 Using the aeroplane performance and planning data sheets calculate the expected landing mass for specified basic weight, load and fuel requirements 	
	 Computation of approach and landing speeds 	
	 Explain the factors affecting the determination of approach and landing speeds 	
	 Using aeroplane performance data sheets determine approach and landing speeds for specified landing masses, configuration and conditions 	
	 Computations for alternate aerodromes 	
	 Explain the requirements for alternate aerodromes 	
	 Using aeroplane performance data sheets determine approach and landing speeds for specified landing masses, configuration and conditions 	
	 Definitions of terms and speeds used 	Changed to accord with
	 V_T - threshold speed 	JAR
	$-$ Explain the factors used in determination of V_{T}	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Discontinued approach climb 	
	 Explain the requirements and aeroplane configuration for the discontinued approach climb 	
	 Landing climb 	
	 Explain the requirements and aeroplane configuration for the landing climb 	
	 Landing distance, dry, wet and contaminated runways 	
	 Explain the factors to be considered in determining the landing distance required for dry, wet and contaminated runways 	
	 Landing distance required 	
	 State the destination and alternate aerodrome landing distance requirements for turbojet and turbo- prop aeroplane 	
	 In each case state the requirements for turbojet and turbo-prop aeroplanes 	
	 State the limitations on dispatching an aeroplane if the landing requirements at the destination aerodrome are not met 	
	 Landing climb performance 	
	 State the minimum performance requirement for landing climb 	
	 Landing configuration 	
	 State the requirements for landing with all engine operating and one engine inoperative 	
	 Approach configuration 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 State the requirements for the approach configuration with all engines operating and one engine inoperative 	
032 03 07 00	Practical application of an airplane performance manual	
032 03 07 01	Use of typical turbojet or turboprop aeroplane performance manual	Given:
	 Take-off, en-route and landing mass calculation 	a. JAR OPS
	 Determine from the aeroplane performance data sheets the maximum weights which satisfy all the regulations for take-off, en-route and landing given the appropriate conditions 	b. JAR 25
	 Take-off data computations 	Performance data sheets
	 Effects of runway variables, aeroplane variables and meteorological variables 	
	 Explain the effect on aeroplane performance and operating weights of the following: 	
	 Runway : dimensions, slope, surface condition, PCN 	
	 Aeroplane : configuration, variable power settings, serviceability of high lift devices, reverse thrust, brakes and anti-skid devices 	
	 Meteorological Conditions : wind components (along and across runway), precipitation, temperature and pressure 	
	 Computation of the relevant 'V' speeds for take-off and initial climb 	
	 Explain the significance and applicability of the take-off and initial climb 'V' speeds 	
	 Using the aeroplane performance data sheets determine the relevant speeds for specified conditions and configuration for all engines operating and one engine inoperative 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Computation of runway distance factors 	
	 Determine the effective length of the runway for specified configuration, runway and meteorological conditions for all engines operating and one engine inoperative, using the aeroplane performance data sheets 	
	 Determination of rate and gradient of initial climb 	
	 Using the aeroplane performance data sheets determine the rate and gradient of climb with all engines operating and one engine inoperative for specified configuration and meteorological conditions 	
	 Determination of obstacle clearance 	
	 Using the aeroplane performance data sheets determine the maximum mass at which obstacles can be cleared for specified conditions to comply with the regulations for all engines operating and one engine inoperative 	
	 Appropriate engine out calculations 	
	 Using the aeroplane performance data sheets determine the aeroplane performance with all engines operating and one engine inoperative, for specified conditions 	
	 Climb computations 	
	 In each of the following, accurately extract the information from the aeroplane performance data sheets for the all engines operating and one engine inoperative cases 	
	 Climb rates and gradients 	

JAR-FCL	LEARNING OBJECTIVES	REMARKS
	 Time to climb 	
	– Fuel used	
032 03 07 02	Cruise computations	Given:
	 Power settings and speeds for maximum range, maximum endurance, high speed and normal cruise 	a. JAR OPS b. JAR 25
	 Explain the effect on aeroplane range, endurance and fuel consumption of power setting/speed options 	c. Appreciate aeroplane
	 State the factors involved in the selection of cruise technique accounting for cost indexing, passenger requirements against company requirements 	
	 Extract the power settings and speeds from the aeroplane performance data sheets 	
	 Fuel consumption 	
	 Extract the fuel consumption figures from the aeroplane performance data sheets 	
	 Engine out operations, pressurisation failure, effect of lower altitude on range and endurance 	
	 Explain the effect on aeroplane operations of engine failure, pressurisation failure, effect of lower altitude on range and endurance 	
	 Extended Twin Operations (ETOPS) 	
	 State the additional factors to be considered for ETOPS 	
	 Additional consideration concerning fuel consumption 	
	 Effects of altitude and aeroplane mass 	

JAR-FCL REF NO	LEARNING OBJECTIVES	REMARKS
	 Explain the effect on fuel consumption of altitude and aeroplane mass 	
	 Fuel for holding, approach and cruise to alternate 	
	 Determine the fuel requirements for holding, approach and transit to an alternate from the aeroplane performance data sheets in normal conditions and the following abnormal conditions 	
	 After engine failure 	
	 After decompression 	